The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has become a severe global public health crisis. Therefore, understanding the molecular details of SARS-CoV-2 will be critical for fighting the virus's spread and preventing future pandemics. In this study, we globally profiled the stability of SARS-CoV-2-encoded proteins, studied their degradation pathways, and determined their correlation with the antibody responses in patient plasma. We identified 18 proteins with unstable half-lives and 6 relatively stable proteins with longer half-lives. The labile SARS-CoV-2 proteins were degraded mainly by the ubiquitin-proteasome pathway. We also observed a significant correlation between antibody levels and protein half-lives, which indicated that a stable antigen of SARS-CoV-2 could be more effective for eliciting antibody responses. In addition, levels of antiviral antibodies targeting NSP10 were found to be negatively correlated with systemic levels of interleukin 6 (IL-6) in patients. These findings may facilitate the development of novel therapeutic or diagnostic approaches. SARS-CoV-2, the etiological cause of COVID-19, carries 29 genes in its genome. However, our knowledge of the viral proteins in biological and biochemical aspects is limited. In this study, we globally profiled the stability of the viral proteins in living lung epithelial cells. Importantly, the labile SARS-CoV-2-encoded proteins were mainly degraded through the ubiquitin-proteasome pathway. Stable proteins, including spike and nucleocapsid, of SARS-CoV-2 were more effective in eliciting antibody production. The levels of antiviral antibodies targeting NSP10 were negatively correlated with systemic levels of IL-6 in COVID-19 patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238396PMC
http://dx.doi.org/10.1128/msystems.00058-22DOI Listing

Publication Analysis

Top Keywords

sars-cov-2-encoded proteins
12
proteins
9
stability sars-cov-2-encoded
8
antibody levels
8
covid-19 patients
8
study globally
8
globally profiled
8
profiled stability
8
correlation antibody
8
antibody responses
8

Similar Publications

Targeting viral suppressor of RNAi confers anti-coronaviral activity.

Mol Ther

January 2025

State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China. Electronic address:

Infections caused by coronaviruses are persistent threats to human health in recent decades, necessitating the development of innovative anti-coronaviral therapies. RNA interference (RNAi) is a conserved cell-intrinsic antiviral mechanism in diverse eukaryotic organisms, including mammals. To counteract, many viruses encode viral suppressors of RNAi (VSRs) to evade antiviral RNAi, implying that targeting VSRs could be a promising strategy to develop antiviral therapies.

View Article and Find Full Text PDF

Ribosome stalling during translation presents actionable cancer cell vulnerability.

PNAS Nexus

August 2024

Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

Myc is a major driver of tumor initiation, progression, and maintenance. Up-regulation of Myc protein level rather than acquisition of neomorphic properties appears to underlie most Myc-driven cancers. Cellular mechanisms governing Myc expression remain incompletely defined.

View Article and Find Full Text PDF

The Ubiquitin proteasome system (UPS), an essential eukaryotic/host/cellular post-translational modification (PTM), plays a critical role in the regulation of diverse cellular functions including regulation of protein stability, immune signaling, antiviral activity, as well as virus replication. Although UPS regulation of viral proteins may be utilized by the host as a defense mechanism to invade viruses, viruses may have adapted to take advantage of the host UPS. This system can be manipulated by viruses such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) to stimulate various steps of the viral replication cycle and facilitate pathogenesis, thereby causing the respiratory disease COVID-19.

View Article and Find Full Text PDF

SARS-CoV-2 and oncolytic EV-D68-encoded proteases differentially regulate pyroptosis.

J Virol

February 2024

Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China.

Pyroptosis, a pro-inflammatory programmed cell death, has been implicated in the pathogenesis of coronavirus disease 2019 and other viral diseases. Gasdermin family proteins (GSDMs), including GSDMD and GSDME, are key regulators of pyroptotic cell death. However, the mechanisms by which virus infection modulates pyroptosis remain unclear.

View Article and Find Full Text PDF

SARS-CoV-2 NSP2 as a Potential Delivery Vehicle for Proteins.

Mol Pharm

March 2024

Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.

The development of biomolecule delivery systems is essential for the treatment of various diseases such as cancer, immunological diseases, and metabolic disorders. For the first time, we found that SARS-CoV-2-encoded nonstructural protein 2 (NSP2) can be secreted from the cells, where it is synthesized. Brefeldin A and H89, inhibitors of ER/Golgi secretion pathways, did not inhibit NSP2 secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!