Introduction: Murine double minute 2 (MDM2) is an oncogene that is important in tumorigenesis, tumor metastasis and chemotherapy resistance. We aimed to synthesize a molecular imaging probe, 99m Tc-HYNIC-siRNA 1489, which could specifically bind to MDM2. The [ 99m Tc]HYNIC-siRNA 1489 molecular probe provided an effective way of assessing MDM2 expression via single-photon emission computed tomography.

Method: Three siRNAs were designed, and their inhibitory efficiencies were determined using western blots and qRT-PCR. The selected siRNA was labeled with the radionuclide technetium-99m ( 99m Tc) through the chelator HYNIC. The bioactivity and properties of [ 99m Tc]HYNIC-siRNA 1489 were evaluated prior to imaging in mice. Imaging and biodistribution of the probe were used to assess its targeting ability.

Results: SiRNA 1489, which was labeled with 99m Tc, displayed a strong inhibitory effect in Michigan Cancer Foundation-7 cell lines. The radiochemical purity of [ 99m Tc]HYNIC-siRNA 1489 was stable at various temperatures in phosphate-buffered serum and bovine serum. The tumor/muscle ratio in mice injected with [ 99m Tc]HYNIC-siRNA 1489 was higher than that in those injected with the negative control, [ 99m Tc]HYNIC-NC siRNA. The percentage injected dose per gram (%ID/g) of the tumors injected with 99m Tc-HYNIC-siRNA 1489 was greater than that of the control group.

Conclusion: The [ 99m Tc]HYNIC-siRNA 1489 was taken up by the tumor, which had a high level of MDM2. The probe exhibited a sufficient retention time in the tumor. This probe may be an effective strategy for evaluating MDM2 expression and achieving early diagnosis in breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278711PMC
http://dx.doi.org/10.1097/MNM.0000000000001582DOI Listing

Publication Analysis

Top Keywords

99m tc]hynic-sirna
20
tc]hynic-sirna 1489
20
99m
10
molecular probe
8
murine double
8
double minute
8
breast cancer
8
99m tc-hynic-sirna
8
0
8
tc-hynic-sirna 1489
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!