Introduction: Hypoxia is a common pathological condition after spinal cord injury. Oestrogen-related receptor alpha (ERRα), as a key regulator of energy metabolism and mitochondrial functions, plays an important role in maintaining cell homeostasis. However, its role in hypoxic spinal microglia has not been fully elaborated. This study investigated the receptor's activity when these cells are hypoxic and used as an model.

Material And Methods: In this study, microglia (BV2) were exposed to cobalt chloride as a hypoxic model, and the inverse agonist of ERRα, XCT790, and pyrido[1,2-α]-pyrimidin-4-one were used to regulate the expression of the receptor to explore the ERRα-related mechanisms involved in hypoxic spinal cord injury (SCI).

Results: ERRα promoted autophagy in BV2 cells and inhibited the activation of the p38 mitogen-activated protein kinase (MAPK) pathway and the expression of anti-inflammatory factors under hypoxic conditions. It also promoted the expression of fibronectin type III domain containing protein 5 (FNDC5).

Conclusion: When a hypoxic SCI occurs, ERRα may maintain the homeostasis of spinal cord nerve cells by regulating autophagy and the p38MAPK/nuclear factor-kappa B cell and FNDC5/brain-derived neurotrophic factor signalling pathways, which are beneficial to the recovery of these cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959695PMC
http://dx.doi.org/10.2478/jvetres-2022-0009DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
cord injury
8
hypoxic spinal
8
hypoxic
7
errα
5
cells
5
estrogen-related receptor
4
receptor errα
4
errα functions
4
functions hypoxic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!