Exosomal lncRNAs: the newest promising liquid biopsy.

Cancer Drug Resist

INSERM, Institut de Cancérologie de l'Ouest, LabCT, U1232, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain 44805, France.

Published: December 2019

LncRNAs are defined as RNA transcripts greater than 200 nucleotides in length that have no or limited protein-coding potential. Basal expression of lncRNAs appeared important for various homeostatic processes, like gene imprinting cell differentiation and organogenesis. Moreover, it has been demonstrated that lncRNAs play an important role in tumorigenesis and metastasis. Some lncRNAs were stably detected in exosomes, which are widely found in body fluids. Several studies validated the use of exosomal lncRNAs as minimally invasive diagnostic and prognostic markers in several types of cancers. In addition, exosomal lncRNAs have been associated with drug resistance of tumor cells, suggesting a clinical application in cancer-targeted therapy. Despite the recent increase of studies on exosomal lncRNAs, their clinical significance in cancer diagnosis, prognosis and treatment needs to be fully explored. The methodologies for their detection with high purity and accuracy must be also improved in order to implement their use in clinical routine. This review aims to summarize the main recent technologies available for the isolation of exosomal lncRNAs, their status as a liquid biopsy as well as their future perspectives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019197PMC
http://dx.doi.org/10.20517/cdr.2019.69DOI Listing

Publication Analysis

Top Keywords

exosomal lncrnas
20
liquid biopsy
8
lncrnas
8
exosomal
5
lncrnas newest
4
newest promising
4
promising liquid
4
biopsy lncrnas
4
lncrnas defined
4
defined rna
4

Similar Publications

Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer.

View Article and Find Full Text PDF

Hepatopulmonary syndrome (HPS) is a severe lung injury caused by chronic liver disease, with limited understanding of the disease pathology. Exosomes are important mediators of intercellular communication that modulates various cellular functions by transferring a variety of intracellular components to target cells. Our recent studies have indicated that a new long noncoding RNA (lncRNA), PICALM-AU1, is mainly expressed in cholangiocytes, and is dramatically induced in the liver during HPS.

View Article and Find Full Text PDF

Background: Type I acute myocardial infarction (T1MI) has a very high morbidity and mortality rate. The role of thrombus-derived exosomes (TEs) in T1MI is unclear.

Methods: The objective of this study was to identify the optimal thrombolytic drug and concentration for extracting TEs.

View Article and Find Full Text PDF

Cardiac myxoma (CM) is an important aetiology of stroke in young adults, and its diagnosis is difficult in patients having stroke because of the lack of diagnostic biomarkers. Tumour-derived exosomes play a crucial role in tumour growth, metastasis, immune regulation, and monitor disease development. Hence,we established an RNA-sequencing dataset for long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) in the plasma and tumour-derived exosomes from four patients with cardiac myxoma-related ischaemic stroke (CM-IS) and six patients with cardiac myxoma without ischaemic stroke (non-IS CM).

View Article and Find Full Text PDF

Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!