LncRNAs are defined as RNA transcripts greater than 200 nucleotides in length that have no or limited protein-coding potential. Basal expression of lncRNAs appeared important for various homeostatic processes, like gene imprinting cell differentiation and organogenesis. Moreover, it has been demonstrated that lncRNAs play an important role in tumorigenesis and metastasis. Some lncRNAs were stably detected in exosomes, which are widely found in body fluids. Several studies validated the use of exosomal lncRNAs as minimally invasive diagnostic and prognostic markers in several types of cancers. In addition, exosomal lncRNAs have been associated with drug resistance of tumor cells, suggesting a clinical application in cancer-targeted therapy. Despite the recent increase of studies on exosomal lncRNAs, their clinical significance in cancer diagnosis, prognosis and treatment needs to be fully explored. The methodologies for their detection with high purity and accuracy must be also improved in order to implement their use in clinical routine. This review aims to summarize the main recent technologies available for the isolation of exosomal lncRNAs, their status as a liquid biopsy as well as their future perspectives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019197 | PMC |
http://dx.doi.org/10.20517/cdr.2019.69 | DOI Listing |
Mol Biol Rep
January 2025
Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India.
Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer.
View Article and Find Full Text PDFHeliyon
February 2024
Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
Hepatopulmonary syndrome (HPS) is a severe lung injury caused by chronic liver disease, with limited understanding of the disease pathology. Exosomes are important mediators of intercellular communication that modulates various cellular functions by transferring a variety of intracellular components to target cells. Our recent studies have indicated that a new long noncoding RNA (lncRNA), PICALM-AU1, is mainly expressed in cholangiocytes, and is dramatically induced in the liver during HPS.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China.
Background: Type I acute myocardial infarction (T1MI) has a very high morbidity and mortality rate. The role of thrombus-derived exosomes (TEs) in T1MI is unclear.
Methods: The objective of this study was to identify the optimal thrombolytic drug and concentration for extracting TEs.
Sci Data
January 2025
Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
Cardiac myxoma (CM) is an important aetiology of stroke in young adults, and its diagnosis is difficult in patients having stroke because of the lack of diagnostic biomarkers. Tumour-derived exosomes play a crucial role in tumour growth, metastasis, immune regulation, and monitor disease development. Hence,we established an RNA-sequencing dataset for long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) in the plasma and tumour-derived exosomes from four patients with cardiac myxoma-related ischaemic stroke (CM-IS) and six patients with cardiac myxoma without ischaemic stroke (non-IS CM).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China.
Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!