Background: Studies have found that microRNA (miR) is abnormally expressed in intracerebral hemorrhage (ICH) and is considered a therapeutic target for ICH.
Objective: To investigate the expression and role of miR-126 in the ICH rat model.
Methods: The ICH rat model was established, and miR-126 agomir and ZEB1 antagomir were injected into the lateral ventricle of ICH rats. The neurological function and water content of brain tissue were evaluated 48 hours later. Brain tissue around the hematoma of rats was taken to detect the expression of miR-126, ZEB1, glial fibrillary acidic protein (GFAP), and inflammatory cytokines (TNF-, IL-1, and IL-6). The luciferase reporter gene was applied to analyze the relationship between miR-126 and ZEB1.
Results: miR-126 was downregulated in the ICH rat model, while ZEB1 was upregulated. miR-126 agomir or ZEB1 antagomir injection could improve neurological function and cerebral edema in ICH rats. In addition, it could also reduce the expression of TNF-, IL-1, IL-6, and GFAP in the brain tissue of ICH rats. Luciferase reporter gene showed that ZEB1 could be targeted and regulated by miR-126.
Conclusion: miR-126 is downregulated in ICH rats, and miR-126 can reduce brain injury in ICH rats by inhibiting ZEB1 expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078836 | PMC |
http://dx.doi.org/10.1155/2022/2698773 | DOI Listing |
Front Immunol
January 2025
State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Neurology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Background: A stable and reproducible experimental bacterial pneumonia model postintracerebral hemorrhage (ICH) is necessary to help investigating the pathogenesis and novel treatments of Stroke-associated pneumonia (SAP).
Aim: To establish a Gram-negative bacterial pneumonia-complicating ICH rat model and an acute lung injury (ALI)-complicating ICH rat model.
Methods: We established two standardized models of post-ICH pneumonia by nasal inoculation with () or intratracheal inoculation with lipopolysaccharide (LPS).
J Pharmacol Sci
February 2025
Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.
The purpose of the present study is to investigate changes in the kynurenine pathway after intracerebral hemorrhage (ICH) and its effects on ICH-induced injury. The exposure of a primary rat microglial culture to thrombin increased the mRNA level of kynurenine 3-monooxygenase (KMO), and this increase was attenuated by a p38 MAPK inhibitor. Thrombin also increased the protein level of KMO.
View Article and Find Full Text PDFNeurocrit Care
January 2025
Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
Background: Intracranial hemorrhage (ICH) is a devastating stroke subtype with a high rate of mortality and disability. Therapeutic options available are primarily limited to supportive care and blood pressure control, whereas the surgical approach remains controversial. In this study, we explored the effects of noninvasive vagus nerve stimulation (nVNS) on hematoma volume and outcome in a rat model of collagenase-induced ICH.
View Article and Find Full Text PDFBMC Neurosci
January 2025
Department of Emergency, Nantong Haimen District People's Hospital, No. 1201 Peking Road, Haimen District, Nantong, 226100, China.
Background: Intracerebral hemorrhage (ICH) is a common subtype of stroke, characterized by a high mortality rate and a tendency to cause neurological damage. This study aims to investigate the role and mechanisms of lncRNA HCP5 in ICH.
Methods: We simulated ICH in vivo by injecting collagenase into rats and established an in vitro model using hemoglobin-treated BV2 cells.
Luminescence
January 2025
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
This study introduces a novel synchronous spectrofluorimetry coupled with chemometric tools for the determination of tenofovir and dolutegravir antiretroviral drugs. Utilizing partial least squares regression (PLS) fine-tuned by genetic algorithm as variable selection tool, the developed models demonstrate greater sensitivity, cost-effectiveness, and reduced environmental impact compared to traditional HPLC methods. The model's validation was further confirmed using external validation in addition to QC samples as per ICH M10 guidelines, which yielded high accuracy ranged between 94.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!