Nanoparticles are new and valuable additives that can favorably tune thermomechanical, electric, optical, and magnetic properties of polymeric materials. The addition of nanoparticles can also enhance or slow down polymer dynamics depending on the mixture thermodynamics and key length scales, namely, nanoparticle size, interparticle spacing (ID), and the polymer radius of gyration (). Presently, a framework for understanding how nanoparticles affect polymer dynamics is not available, in part, because of a lack of wide-ranging experimental studies. Here, tracer diffusion is studied in model nanocomposites containing silica nanoparticles grafted with either polymer brushes (soft nanoparticles) or short ligands (hard nanoparticles). Over a wide range of tracer molecular weights and nanoparticle loadings, the normalized diffusion coefficient collapses onto a universal curve for both soft and hard nanoparticles when plotted against a confinement parameter, defined as ID/, which accounts for tracer penetration into the brush. These experimental results provide new insights into the fundamental principles required to construct predictive models of polymer dynamics in nanocomposites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/mz400064w | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Medicine, Huanghe Science and Technology University, Zhengzhou 450061, P. R. China.
Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.
Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University P. Valdena 3 LV-1048 Riga Latvia
Research efforts are increasingly directed towards the development of biodegradable polymers derived from renewable agricultural resources. Polymer blends, which combine multiple polymers, offer enhanced properties such as ductility and toughness while being more cost-effective compared to the development of specialized copolymers. This study examines nine binary and four ternary blends of polylactic acid (PLA), poly(butylene succinate--adipate) (PBSA), and polyhydroxyalkanoate (PHA).
View Article and Find Full Text PDFSci Rep
January 2025
Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
The cotton leafworm, Spodoptra littoralis, causes great damage to cotton crops. A new, safer method than insecticide is necessary for its control. Selenium nanoparticles (SeNPs) are metalloid nanomaterial, with extensive biological activities.
View Article and Find Full Text PDFSci Rep
January 2025
Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
Chemical fungicides have been used to control fungal diseases like Sclerotinia sclerotiorum. These fungicides must be restricted because of their toxicity and the development of resistance strains. Therefore, utilizing natural nanoscale materials in agricultural production is a potential alternative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!