Orientation-Dependent Order-Disorder Transition of Block Copolymer Lamellae in Electric Fields.

ACS Macro Lett

Lehrstuhl für Makromolekulare Materialien und Oberflächen, DWI an der RWTH Aachen e.V., RWTH Aachen University, D-52056 Aachen, Germany.

Published: June 2013

Electric fields have been shown to stabilize the disordered phase of near-critical block copolymer solutions. Here, we use in situ synchrotron small-angle X-ray scattering to examine how the initial orientation of lamellar domains with respect to the external field (φ) affects the shift in the order-disorder transition temperature () of lyotropic solutions of poly(styrene--isoprene) in toluene. We find a downward shift of the transition temperature, which scales with lamellar orientation as Δ ∼ cos φ, in accordance with theory.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mz400013uDOI Listing

Publication Analysis

Top Keywords

order-disorder transition
8
block copolymer
8
electric fields
8
transition temperature
8
orientation-dependent order-disorder
4
transition block
4
copolymer lamellae
4
lamellae electric
4
fields electric
4
fields stabilize
4

Similar Publications

Liquid Structure of Magnesium Aluminates.

Materials (Basel)

December 2024

Interfaces, Confinement, Matériaux et Nanostructures, 45071 Orléans Cedex 2, France.

Magnesium aluminates (MgO)(AlO) belong to a class of refractory materials with important applications in glass and glass-ceramic technologies. Typically, these materials are fabricated from high-temperature molten phases. However, due to the difficulties in making measurements at very high temperatures, information on liquid-state structure and properties is limited.

View Article and Find Full Text PDF

Orientational Disorder and Molecular Correlations in Hybrid Organic-Inorganic Perovskites: From Fundamental Insights to Technological Applications.

ACS Appl Mater Interfaces

December 2024

Group of Characterization of Materials, Departament de Física, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Barcelona 08019, Spain.

Hybrid organic-inorganic perovskites (HOIP) have emerged in recent years as highly promising semiconducting materials for a wide range of optoelectronic and energy applications. Nevertheless, the rotational dynamics of the organic components and many-molecule interdependencies, which may strongly impact the functional properties of HOIP, are not yet fully understood. In this study, we quantitatively analyze the orientational disorder and molecular correlations in archetypal perovskite CHNHPbI (MAPI) by performing comprehensive molecular dynamics simulations and entropy calculations.

View Article and Find Full Text PDF

Crown ether inclusion compound 3,4-difluoroanilinium di(methanesulfonyl)amidate-18-crown-6 (1/1) clathrate.

Acta Crystallogr C Struct Chem

January 2025

Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.

In recent years, molecular-based ferroelectric materials have attracted widespread research interest due to their excellent performance. Among them, host-guest-type crown ether inclusion compounds composed of organic ammonium cations, crown ether molecules and corresponding anions have become a star component in the design of molecular-based ferroelectric materials because they are prone to order-disorder phase transitions. Many anions have been studied extensively as counter-ions, such as bis(trifluoromethanesulfonyl)amidate (TFSA), PF and [FeCl].

View Article and Find Full Text PDF

Polymorphs commonly exist for various materials, enabling phase engineering for diverse material properties. While the crystal structures of different polymorphs can, in principle, be experimentally characterized, interpreting and understanding complex crystal structures can be very challenging. Using Ga_{2}O_{3} as a prototype, here we show that the crystal structure of γ-Ga_{2}O_{3} has long been misinterpreted from either theory or experiment.

View Article and Find Full Text PDF

A Ferroelastic Salt Cocrystal with Ultraviolet Emission.

Inorg Chem

December 2024

Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.

The coexistence and coupling of photoluminescence and ferroelasticity in a single matter are vitally important for developing multifunctional materials and devices. However, the effective construction of ferroelastics with efficient photoluminescence, especially in the ultraviolet range, is a great challenge. In this work, a salt cocrystal, (DPA)(DPAH)PF (DPA = diphenylamine, DPAH = diphenylamine cation), with ultraviolet emission and ferroelasticity was reported by introducing the anion group PF in the parent DPA crystal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!