AI Article Synopsis

Article Abstract

l-Proline moieties bound to a thermoresponsive polymer nanoreactor efficiently directed the asymmetric aldol reaction in water with excellent yields and enantioselectivity (ee). The reactions were efficient at higher temperatures in direct contrast to the low yields and ee values found when the reaction was carried out in a DMF/water mixture due to the location of the l-proline moieties within the hydrophobic pocket inside the core of the nanoreactors. This ideal environment formed for catalysis allows control over the water content as well as enhancing interactions between the carboxylic acid of l-proline and the aldehyde substrate. The nanoreactors were disassembled to fully water-soluble polymers by lowering the temperature to below the lower critical solution temperature (LCST) of the polymer, resulting in precipitation of the product in near pure form. The product was isolated by centrifugation and the polymer/water solution reused in additional catalytic cycles by heating the polymer above its LCST and thus reforming the nanoreactors. Although a small decrease in yield after five cycles was observed, the selectivity (anti/syn ratio and ee) remained high.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mz4000943DOI Listing

Publication Analysis

Top Keywords

asymmetric aldol
8
aldol reaction
8
reaction water
8
l-proline moieties
8
thermoresponsive polymer-supported
4
l-proline
4
polymer-supported l-proline
4
l-proline micelle
4
micelle catalysts
4
catalysts direct
4

Similar Publications

Chemical and Enzymatic Mechanosynthesis of Organocatalytic Peptide Materials Based on Proline and Phenylalanine.

ChemSusChem

January 2025

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales, Instituto de Química, Calle 70 No 52-21, Medellín, NA, Medellín, COLOMBIA.

In recent years, mechanosynthesis of peptides through either chemical or enzymatic routes has been accomplished. In part, this advancement has been driven due to the organocatalytic properties of peptide-based biomaterials. In this work, we report the merging of chemical and enzymatic protocols under mechanochemical conditions to synthesize peptide materials based on L-proline and L-phenylalanine.

View Article and Find Full Text PDF

Catalytic Asymmetric Total Synthesis of (+)-Chamaecydin and (+)-Isochamaecydin and their Stereoisomers.

Angew Chem Int Ed Engl

January 2025

Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China.

A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed.

View Article and Find Full Text PDF

The successful implementation of a cascade reaction involving a cyclobutyl unit has posed a significant challenge in achieving ring-retentive functionalization because of the ring's sacrificial tendency. Herein, we have accomplished a cinchona-derived squaramide-catalyzed cascade reaction sequence, encompassing the desymmetrization of cyclobutanone, followed by an aldol reaction and, subsequently, a 1,4-addition step. This overall process offers a viable strategy to access architecturally fascinating oxa-spirocycles fused with cyclobutanone motifs in good yields with high optical purity.

View Article and Find Full Text PDF

The convergent total synthesis of ixabepilone and its analogues in a 13-step longest linear sequence is reported. The crucial chiral centers at challenging C3-O, C8-C and C15-N positions on the scaffold of the ixabepilone were installed via highly efficient asymmetric hydrogenations (up to 95 % yield and up to 99 % e.e.

View Article and Find Full Text PDF

Utilizing enzymes as biocatalysts, an alternative strategy has been developed for the highly enantioselective synthesis of chiral 2,3-dihydrobenzofuran (2,3-DHB) esters via the dynamic kinetic resolution of 2,3-dihydro-3-benzofuranols, which are generated from an intramolecular Aldol reaction. This protocol provides easy access to a series of 2,3-DHB ester derivatives, prodrugs, and allows for functional group transformations. Biological evaluation also indicates that some of the products exhibit potent anti-inflammatory activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!