Identification of spatio-temporal clusters of lung cancer cases in Pennsylvania, USA: 2010-2017.

BMC Cancer

Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Published: May 2022

Background: It is known that geographic location plays a role in developing lung cancer. The objectives of this study were to examine spatio-temporal patterns of lung cancer incidence in Pennsylvania, to identify geographic clusters of high incidence, and to compare demographic characteristics and general physical and mental health characteristics in those areas.

Method: We geocoded the residential addresses at the time of diagnosis for lung cancer cases in the Pennsylvania Cancer Registry diagnosed between 2010 and 2017. Relative risks over the expected case counts at the census tract level were estimated using a log-linear Poisson model that allowed for spatial and temporal effects. Spatio-temporal clusters with high incidence were identified using scan statistics. Demographics obtained from the 2011-2015 American Community Survey and health variables obtained from 2020 CDC PLACES database were compared between census tracts that were part of clusters versus those that were not.

Results: Overall, the age-adjusted incidence rates and the relative risk of lung cancer decreased from 2010 to 2017 with no statistically significant space and time interaction. The analyses detected 5 statistically significant clusters over the 8-year study period. Cluster 1, the most likely cluster, was in southeastern PA including Delaware, Montgomery, and Philadelphia Counties from 2010 to 2013 (log likelihood ratio = 136.6); Cluster 2, the cluster with the largest area was in southwestern PA in the same period including Allegheny, Fayette, Greene, Washington, and Westmoreland Counties (log likelihood ratio = 78.6). Cluster 3 was in Mifflin County from 2014 to 2016 (log likelihood ratio = 25.3), Cluster 4 was in Luzerne County from 2013 to 2016 (log likelihood ratio = 18.1), and Cluster 5 was in Dauphin, Cumberland, and York Counties limited to 2010 to 2012 (log likelihood ratio = 17.9). Census tracts that were part of the high incidence clusters tended to be densely populated, had higher percentages of African American and residents that live below poverty line, and had poorer mental health and physical health when compared to the non-clusters (all p < 0.001).

Conclusions: These high incidence areas for lung cancer warrant further monitoring for other individual and environmental risk factors and screening efforts so lung cancer cases can be identified early and more efficiently.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112439PMC
http://dx.doi.org/10.1186/s12885-022-09652-8DOI Listing

Publication Analysis

Top Keywords

lung cancer
20
log likelihood
20
high incidence
12
spatio-temporal clusters
8
cancer cases
8
cases pennsylvania
8
clusters high
8
mental health
8
2010 2017
8
census tracts
8

Similar Publications

Signatures of H3K4me3 modification predict cancer immunotherapy response and identify a new immune checkpoint-SLAMF9.

Respir Res

January 2025

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

H3 lysine 4 trimethylation (H3K4me3) modification and related regulators extensively regulate various crucial transcriptional courses in health and disease. However, the regulatory relationship between H3K4me3 modification and anti-tumor immunity has not been fully elucidated. We identified 72 independent prognostic genes of lung adenocarcinoma (LUAD) whose transcriptional expression were closely correlated with known 27 H3K4me3 regulators.

View Article and Find Full Text PDF

Background: Ensuring equal access to affordable, high-quality, and satisfied healthcare for cancer patients is a challenge worldwide. Our study aimed to investigate preferences for public health insurance coverage of new anticancer drugs among non-small cell lung cancer (NSCLC) patients in China.

Methods: We identified six attributes of new anticancer drugs and adopted a Bayesian-efficient design to generate choice scenarios for a discrete choice experiment (DCE).

View Article and Find Full Text PDF

Background: There is still no consensus regarding the correlation between TLS and the prognosis of lung cancer patients. This meta-analysis aimed to investigate the association between TLS and prognosis in patients with lung cancer. In addition, the prognostic value of TLS for the efficacy of immunotherapy was also studied.

View Article and Find Full Text PDF

Background: Complete Cytoreduction (CC) in ovarian cancer (OC) has been associated with better outcomes. Outcomes after CC have a multifactorial and interrelated cause that may not be predictable by conventional statistical methods. Artificial intelligence (AI) may be more accurate in predicting outcomes.

View Article and Find Full Text PDF

Clinical and imaging features of co-existent pulmonary tuberculosis and lung cancer: a population-based matching study in China.

BMC Cancer

January 2025

Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P.R. China.

Background: Co-existent pulmonary tuberculosis and lung cancer (PTB-LC) represent a unique disease entity often characterized by missed or delayed diagnosis. This study aimed to investigate the clinical and radiological features of patients diagnosed with PTB-LC.

Methods: Patients diagnosed with active PTB-LC (APTB-LC), inactive PTB-LC (IAPTB), and LC alone without PTB between 2010 and 2022 at our institute were retrospectively collected and 1:1:1 matched based on gender, age, and time of admission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!