We have tested the forearm skin of humans as a target organ to deliver proprioceptive feedback via a tactile sensory substitution method. In the proposed method, a contactor probe was actuated by a linear servo motor and moved on the skin in proximo-distal axis depending on the angle of a virtual joint moving on a 180° arc. Twenty healthy subjects were tested to stop the joint at a given target under no-feedback, visual feedback, and tactile (dorsal and volar) feedback conditions. The absolute difference between the target and the response angle was recorded. Tests were repeated 4 times with ~ 1-week intervals. Two joint movement speeds were tested. The subjects performed best with visual feedback, and worst if no feedback was provided. Their performances with tactile feedback were not as good as in the visual feedback condition, but better than in the no-feedback condition. Subjects equally performed with volar and dorsal tactile feedback. The movement speed had no significant effects on tactile feedback. The performance improved with training only in tactile feedback conditions. The proprioceptive information from a motorized prosthesis can be provided through probes moving on the forearm skin, while the efficacy of the feedback may improve with extensive training.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-022-02978-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!