Delineating the relative solubility of soil phosphorus (P) in agricultural landscapes is essential to predicting potential P mobilization in the landscape and can improve nutrient management strategies. This study describes spatial patterns of soil extractable P (easily, moderately, and poorly soluble P) in agricultural landscapes of the Red River basin and the southern Great Lakes region. Surface soils (0-30 cm) and select deeper cores (0-90 cm) were collected from 10 cropped fields ranging in terrain (near-level to hummocky), soil texture (clay to loam), composition (calcareous to noncalcareous), and climate across these differing glacial landscapes. Poorly soluble P dominated (up to 91%) total extractable P in the surface soils at eight sites. No differences in the relative solubilities of soil extractable P with microtopography were apparent in landscapes without defined surface depressions. In contrast, in landscapes with pronounced surface depressions, increased easily soluble P (Sol-P), and decreased soil P sorption capacity were found in soil in wetter, low-slope zones relative to drier upslope locations. The Sol-P pool was most important to soil P retention (up to 28%) within the surface depressions of the Red River basin and at sites with low-carbonate soils in the southern Lake Erie watershed (up to 28%), representing areas at elevated risk of soil P remobilization. This study demonstrates interrelationships among soil extractable P pools, soil development, and soil moisture regimes in agricultural glacial landscapes and provides insight into identifying potential areas for soil P remobilization and associated P availability to crops and runoff.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jeq2.20369 | DOI Listing |
Glob Chang Biol
January 2025
University of Münster, Institute of Landscape Ecology, Münster, Germany.
Temperate forests cover 25% of the world's forest area and most of them are managed for timber production. To increase yields, native deciduous trees have been commonly replaced by fast-growing conifers, especially in Western and Central Europe. Despite the importance of forest soils for a variety of ecosystem functions, the effects of forest management intensity on soil biological processes have not yet been sufficiently understood.
View Article and Find Full Text PDFTalanta
December 2024
Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) in the environment is a growing concern leading to a focus on PFAS occurrence in biosolids, a byproduct of wastewater treatment processes, often applied to improve soil health. This led to the need for analytical method development for assessing PFAS in biosolids. This study compares three methods for PFAS quantitation, evaluating solvent extraction, clean-up techniques, and final injection solvents.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
December 2024
Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil.
Background: Actinobacteria are major producers of antibacterial and antifungal metabolites and are growing their search for substances of biotechnological interest, especially for use in agriculture, among other applications. The Amazon is potentially rich in actinobacteria; however, almost no research studies exist. Thus, we present a study of the occurrence and antifungal potential of actinobacteria from the rhizosphere of , a native South American plant and one that is economically useful in the whole of the Amazon.
View Article and Find Full Text PDFPlant Soil
May 2024
Department of Geography, McGill University, Montreal, Canada.
Aims: Peat is used as a major ingredient of growing media in horticulture. Peat extracted from bogs can be acidic and low in nutrient availability and is therefore mixed with liming agents, nutrients, surfactants, perlite and so on. This study aims to estimate the rates at which raw peat and the modified peat ('growing media') decompose to release carbon dioxide (CO), to estimate the release of carbon (C) from liming agents and to estimate how peat biogeochemistry is changed.
View Article and Find Full Text PDFEnviron Res
December 2024
Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany.
This study reviewed the recovery of humic substances (HS) from anaerobic digestate of sludge as a potential fertilizer, focusing on the quantification of HS, the efficiency of HS recovery, and its interaction with pollutants. The potential pitfalls of current misunderstanding for HS quantification in sludge were pointed out. HS present in sludge showed potential to be used as a fertilizer, which solubilized insoluble phosphates for enhanced soil fertility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!