Cellulose- and xylan-degrading yeasts: Enzymes, applications and biotechnological potential.

Biotechnol Adv

Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden. Electronic address:

Published: October 2022

Microbes and their carbohydrate-active enzymes are central for depolymerization of complex lignocellulosic polysaccharides in the global carbon cycle. Their unique abilities to degrade and ferment carbohydrates are also utilized in many industrial processes such as baking, brewing and production of biofuels and drugs. Effective degradation and utilization of cellulose and hemicelluloses is important for the shift towards green bioeconomy, and requires microbes equipped with proper sets of carbohydrate-active enzymes (CAZymes). Knowledge of cellulolytic and xylanolytic CAZymes has mainly been generated from bacteria and filamentous fungi, while yeasts have been largely overlooked and may represent an untapped resource in natural CAZymes with industrial relevance. Cellulose and xylan-degrading yeasts with the ability to ferment saccharides are also promising candidates for consolidated bioprocesses (CBPs), as they can degrade lignocellulose and utilize its constituents to produce desired products at the same time. Cellulolytic yeasts able to utilize insoluble crystalline cellulose are rare while xylanolytic yeasts are rather widespread in nature. The lack of particular enzymes in yeasts can be remediated by introducing the missing enzymes into strains having outstanding product-forming attributes. In this review, we provide a comprehensive overview of the cellulose- and xylan-degrading ascomycetous and basidiomycetous yeasts known to date. We describe how these yeasts can be identified through bioprospecting and bioinformatic approaches and summarize available growth and enzymatic assays for strain characterization. Known and predicted CAZymes are extensively analyzed, both in individual species and in a phylogenetic perspective. We also describe the strategies used for construction of recombinant cellulolytic and xylanolytic strains as well as current applications for polysaccharide-degrading yeasts. Finally, we discuss the great potential of these yeasts as industrial cell factories, identify open research questions and provide suggestions for future investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2022.107981DOI Listing

Publication Analysis

Top Keywords

yeasts
10
cellulose- xylan-degrading
8
xylan-degrading yeasts
8
carbohydrate-active enzymes
8
cellulolytic xylanolytic
8
enzymes
5
yeasts enzymes
4
enzymes applications
4
applications biotechnological
4
biotechnological potential
4

Similar Publications

Biomass-Based Microbial Protein Production: A Review of Processing and Properties.

Front Biosci (Elite Ed)

December 2024

Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA.

A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice.

View Article and Find Full Text PDF

Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.

Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.

View Article and Find Full Text PDF

The Russian dandelion () is a promising source of natural rubber (NR). The synthesis of NR takes place on the surface of organelles known as rubber particles, which are found in latex - the cytoplasm of specialized cells known as laticifers. As well as the enzymes directly responsible for NR synthesis, the rubber particles also contain small rubber particle proteins (SRPPs), the most abundant of which are SRPP3, 4 and 5.

View Article and Find Full Text PDF

Chinese chestnut ( Blume) is an important economic forest tree species and mainly cultivated in mountainous areas and wastelands, subjecting it to various abiotic stresses. The protein phosphatase 2C (PP2C) genes contributes largely to stress responses in plants. However, the characteristics and functions of genes in remain unknown.

View Article and Find Full Text PDF

The gut microbiome plays a key role in the pathogenesis and disease activity of inflammatory bowel disease (IBD). While research has focused on the bacterial microbiome, recent studies have shifted towards host genetics and host-fungal interactions. The mycobiota is a vital component of the gastrointestinal microbial community and plays a significant role in immune regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!