Next-generation sequencing (NGS) technologies revolutionized the molecular diagnosis of sensorineural hearing loss (SNHL) and are now a standard of care. In this study, 71 Portuguese probands with hereditary SNHL were assessed by whole-exome sequencing (WES) targeting a panel of 158 genes related to SNHL, aiming to evaluate the diagnostic yield of this methodological approach and to report the spectrum of variants. Patients with either nonsyndromic or syndromic SNHL were included. Also, patients were previously screened for variants in the GJB2 gene and for duplications/deletions in the GJB6 gene. Causative variants in 11 different genes were identified in 15 (21.1%) out of 71 probands, 5 of which had associated syndromes. In 6 other patients (8.5%), presumptive causative variants were identified in MYO15A, TMIE, TBC1D24, SPMX, GJB3, PCDH15, and CDH23 genes, uncovering a potential case of digenic Usher syndrome. The study was inconclusive in 20 probands (28.2%), in 19 due to lack of segregation analysis and in one due to uncertain phenotype-genotype matching. In the remaining 30 patients (42.3%) no potentially causative variants were identified. The diagnostic yield did not significantly vary according to the age of hearing-impairment onset. As the first study on the application of NGS technologies in SNHL based on a Portuguese cohort, our results may contribute to characterize the spectrum of variants related to SNHL in the Portuguese population. Additionally, the present study provides new insights into the contribution of MYO3A, TECTA, EDNRB, TBC1D24, and GJB3 genes to SNHL. For the significant number of undiagnosed patients, reanalysis of WES data - either for a broader gene panel or in a non-targeted approach - may be considered.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000523840DOI Listing

Publication Analysis

Top Keywords

causative variants
12
whole-exome sequencing
8
gene panel
8
sensorineural hearing
8
hearing loss
8
portuguese cohort
8
ngs technologies
8
genes snhl
8
diagnostic yield
8
spectrum variants
8

Similar Publications

Chapter 5: THE ROLE OF GENETICS IN PRIMARY HYPERPARATHYROIDISM.

Ann Endocrinol (Paris)

January 2025

Univ. Lille, Inserm, CHU Lille, U1286 - Infinite, F-59045 Lille Cedex, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France. Electronic address:

Around 10% of cases of primary hyperparathyroidism are thought to be genetic in origin, some of which are part of a syndromic form such as multiple endocrine neoplasia types 1, 2A or 4 or hyperparathyroidism-jaw tumor syndrome, while the remainder are cases of isolated familial primary hyperparathyroidism. Recognition of these genetic forms is important to ensure appropriate management according to the gene and type of variant involved, but screening for a genetic cause is not justified in all patients presenting primary hyperparathyroidism. The indications for genetic analysis have made it possible to propose a decision tree that takes into account whether the presentation is familial or sporadic, syndromic or isolated, patient age, and histopathological type of parathyroid lesion.

View Article and Find Full Text PDF

Background: Neoadjuvant chemoradiotherapy (nCRT) is the standard for locally advanced rectal cancer (LARC). However, distant metastasis remains the primary cause of treatment failure. Early identification of high-risk individuals for personalized treatment may offer a solution.

View Article and Find Full Text PDF

Ratiometric bioluminescent detection of Cu(II) ion based on differences in enzymatic reaction kinetics of two luciferase variants.

Talanta

January 2025

Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, 565-0871, Japan; SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, 567-0047, Japan; Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, 565-0871, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan. Electronic address:

Heavy metal contamination in water bodies has raised global concerns due to its significant threats to both public health and ecosystem. Copper (Cu), one of the most widely used metals, is also an essential trace element in physiological systems. Excessive intake of Cu from water can cause toxicity, potentially resulting in serious health risks.

View Article and Find Full Text PDF

Here we characterize seven Cx30.3 gene variants (R22H, S26Y, P61R, C86S, E99K, T130M and M190L) clinically associated with the rare skin disorder erythrokeratodermia variabilis et progressiva (EKVP) in tissue-relevant and differentiation-competent rat epidermal keratinocytes (REKs). We found that all variants, when expressed alone or together with wildtype (WT) Cx30.

View Article and Find Full Text PDF

Background: Congenital factor VII (FVII) deficiency is a genetic disorder characterized by decreased FVII activity, which sometimes leads to fatal bleeding. Numerous variants have been found in FVII deficiency, but mutations vary among patients. Each mutation deserves further exploration for each patient at risk of bleeding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!