A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel triazine-based cationic covalent organic polymers for highly efficient and selective removal of selenate from contaminated water. | LitMetric

Novel triazine-based cationic covalent organic polymers for highly efficient and selective removal of selenate from contaminated water.

J Hazard Mater

Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China. Electronic address:

Published: August 2022

Selenium (Se) removal from contaminated water has become a major environmental problem in recent years. Designing efficient and selective materials for selenium adsorption is urgent and still represents a great challenge. Herein, two novel cationic covalent triazine frameworks (CTFS-Cl and CTFL-Cl) are developed for the first time and employed as a new class of Se adsorbents. The results from systematic adsorption experiments indicate that these materials can adsorb SeO in a wide range of pH values (2-11) with fast kinetics (5 min), outstanding adsorption capacity, and excellent selectivity over other competing anions. The maximum adsorption capacity achieved (149.3 mg/g by CTFS-Cl) constitutes one of the highest values among the organic polymeric materials. More importantly, after a single step adsorption, these materials can reduce the Se concentrations to lower than 10 μg/L, the lowest drinking water standard in the world. The adsorption mechanism was probed by XPS technique, EDS analysis, adsorption experiments, and DFT calculations, which reveals that anion exchange between Cl and SeO is the main driving force for Se adsorption. Additionally, CTFS-Cl and CTFL-Cl perform well toward real contaminated river water sample with the residual Se being less than 8.49 μg/L. This work demonstrates the excellent performance of CTFs-based materials with great application prospect for Se removal in contaminated water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.129127DOI Listing

Publication Analysis

Top Keywords

contaminated water
12
cationic covalent
8
efficient selective
8
removal contaminated
8
adsorption
8
ctfs-cl ctfl-cl
8
adsorption experiments
8
adsorption capacity
8
water
5
materials
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!