In recent years, the pavement industry has been seeking sustainable development through recycling reclaimed asphalt pavement and reusing other waste materials as replacements for asphalt mixture constituents. Incorporating waste material into asphalt mixture and the presence of pollutants such as exhaust fumes and gasoline due to vehicle traffic may lead to contaminants leaching from asphalt pavements to underlying soil layers and groundwater aquifers, posing serious risks to ecosystems and the environment. To cast light on contaminant leaching from asphalt pavements, this article presents a comprehensive review of the literature that is divided into four research areas: evaluation of leaching measurement methods, leaching from recycled asphalt materials, leaching characteristics of porous asphalt pavements, and waste-modified asphalt mixtures. Moreover, a critical discussion of bibliometric data, literature content and knowledge gaps in this domain is provided to help highway agencies and environmental scientists address contaminant leaching from asphalt pavements. Finally, some potential research directions are suggested for future research works.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118584DOI Listing

Publication Analysis

Top Keywords

asphalt pavements
20
leaching asphalt
16
asphalt
13
contaminant leaching
12
measurement methods
8
reclaimed asphalt
8
asphalt pavement
8
porous asphalt
8
waste-modified asphalt
8
asphalt mixtures
8

Similar Publications

This study investigates the primary data collected at a used cooking oil (UCO) recycling facility to quantify its environmental impact when used as a rejuvenator in high content reclaimed asphalt pavement (RAP) mixes. Annual energy consumption data sets on transportation, storage, filtration, machinery, and purification are assessed using the life cycle assessment (LCA) methodology with the LCA software Simapro 9.4 to evaluate the influential parameters and processes in reducing emissions.

View Article and Find Full Text PDF

Sustainable materials and structures have become widely used in asphalt pavements to mitigate the resource crisis and achieve carbon neutrality [...

View Article and Find Full Text PDF

Asphalt pavement, widely utilized in transportation infrastructure due to its favourable properties, faces significant degradation from chloride salt erosion in coastal areas and winter deicing regions. In this study, two commonly used asphalt binders, 70# base asphalt and SBS (Styrene-Butadiene-Styrene)-modified asphalt, were utilized to study the chloride salt erosion effect on asphalt pavement by immersing materials in laboratory-prepared chloride salt solutions. The conventional properties and adhesion of asphalt were assessed using penetration, softening point, ductility, and pull-off tests, while Fourier transform infrared spectroscopy (FTIR) elucidated the erosion mechanism.

View Article and Find Full Text PDF

Study on Refined Crushing Technology of RAP and Mechanical Properties of RAP-Doped Cement-Stabilised Macadam Base.

Materials (Basel)

January 2025

Gansu Industry Technology Center of Transportation Construction Materials Research and Application, Lanzhou Jiaotong University, Lanzhou 730070, China.

In order to study the effect of the crushing process on the fine separation of reclaimed asphalt pavement (RAP) and the mechanical properties of cement-stabilised aggregate mixed with RAP, four crushing processes, namely small mesh hammer crushing, hammer crushing, jaw crushing, and double roller crushing, were used to separate the aggregate from asphalt in RAP materials. The effect of crushing on the grading characteristics and agglomeration condition of RAP material was investigated. RAP cement-stabilised aggregates were prepared and analysed for their mechanical properties and micro-morphology using RAP materials obtained from fine separation.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how moisture affects the bond between fiber asphalt mixtures and aggregate, impacting their cracking resistance.
  • Researchers tested three types of fiber (basalt, glass, polyester) at various contents and used specific tests to measure interfacial strength.
  • Results indicated that while fibers improve interfacial strength, moisture infiltration significantly weakens it, influencing the overall durability of asphalt pavement.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!