The amyloid cascade hypothesis states that senile plaques, composed of amyloid β (Aβ) fibrils, play a key role in Alzheimer's disease (AD). However, recent experiments have shown that Aβ oligomers are more toxic to neurons than highly ordered fibrils. The molecular mechanism underlying this observation remains largely unknown. One of the possible scenarios for neurotoxicity is that Aβ peptides create pores in the lipid membrane that allow Ca ions to enter cells, resulting in a signal of cell apoptosis. Hence, one might think that oligomers are more toxic due to their higher ability to create ion channels than fibrils. In this work, we study the effect of Aβ42 dodecamer and fibrils on a neuronal membrane, which is similar to that observed in AD patients, using all-atom molecular dynamics simulations. Due to short simulation times, we cannot observe the formation of pores, but useful insight on the early events of this process has been obtained. Namely, we showed that dodecamer distorts the lipid membrane to a greater extent than fibrils, which may indicate that ion channels can be more easily formed in the presence of oligomers. Based on this result, we anticipate that oligomers are more toxic than mature fibrils, as observed experimentally. Moreover, the Aβ-membrane interaction was found to be governed by the repulsive electrostatic interaction between Aβ and the ganglioside GM1 lipid. We calculated the bending and compressibility modulus of the membrane in the absence of Aβ and obtained good agreement with the experiment. We predict that the dodecamer will increase the compressibility modulus but has little effect on the bending modulus. Due to the weak interaction with the membrane, fibrils insignificantly change the membrane elastic properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150093PMC
http://dx.doi.org/10.1021/acs.jpcb.2c01769DOI Listing

Publication Analysis

Top Keywords

oligomers toxic
12
neuronal membrane
8
lipid membrane
8
ion channels
8
compressibility modulus
8
membrane
7
fibrils
7
oligomers
5
5
amyloid dodecamer
4

Similar Publications

Background: Adamantane derivatives, such as memantine (Mem) and amantadine (Ada), have distinct mechanisms and therapeutic applications. Ada is primarily utilized as an antiviral and anti-Parkinson drug without significant pro-cognitive effects, Mem is effective in various clinical conditions characterized by cognitive deficits, including Alzheimer's disease. Recent evidence highlights a neuroprotective role for Aβ monomers, suggesting that preventing their aggregation into toxic oligomers could be a promising therapeutic strategy.

View Article and Find Full Text PDF

A criterion characterizing the combined neurotoxicity of amyloid beta and tau oligomers is suggested. A mathematical model that makes it possible to calculate a value of this criterion during senile plaque and NFT formation is proposed. Computations show that for physiologically relevant parameter values, the value of the criterion increases approximately linearly as time increases.

View Article and Find Full Text PDF

Charge Modification of Lysine Mitigates Amyloid-β Aggregation.

Chembiochem

January 2025

Yonsei University, Deparment of Pharmacy, 85 Songdogwahak-ro, Yeonsu-gu, Yonsei University, Veritas Hall D411, 21983, Incheon, KOREA, REPUBLIC OF.

Alzheimer's disease (AD) is a progressive neurodegenerative condition characterized by the deposition of amyloid-β (Aβ) peptides, which aggregate into toxic structures such as oligomers, fibrils, and plaques. The presence of these Aβ aggregates in the brain plays a crucial role in the pathophysiology, leading to synaptic dysfunction and cognitive impairment. Understanding how physiological factors affect Aβ aggregation is essential, and therefore, exploring their influence in vitro will likely provide insights into their role in AD pathology.

View Article and Find Full Text PDF

Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.

View Article and Find Full Text PDF

Human UDP-glucuronosyltransferases (UGTs) are pivotal phase II metabolic enzymes facilitating the transfer of glucuronic acid from UDP-glucuronic acid (UDPGA) to various substrates. UGTs are classic type I transmembrane glycoproteins, mainly localized in the endoplasmic reticulum (ER) membrane. This review comprehensively explores UGTs, encompassing gene expression, functional characteristics, substrate specificity, and metabolic mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!