A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbpl0lom81h7jrp7g5nc9q11ohjqcamca): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Uncovering Cryptic Coevolution. | LitMetric

AbstractStudies of coevolution in the wild have largely focused on reciprocally specialized species pairs with striking and exaggerated phenotypes. Textbook examples include interactions between toxic newts and their garter snake predators, long-tongued flies and the flowers they pollinate, and weevils with elongated rostra used to bore through the defensive pericarp of their host plants. Although these studies have laid a foundation for understanding coevolution in the wild, they have also contributed to the widespread impression that coevolution is a rare and quirky sideshow to the day-to-day grind of ecology and evolution. In this perspective, we argue that the focus of coevolution has been biased toward the obvious and ignored the cryptic. We have focused on the obvious-studies of reciprocally specialized species pairs with exaggerated phenotypes-mainly because we have lacked the statistical tools required to study coevolution in more generalized and phenotypically mundane systems. Building from well-established coevolutionary theory, we illustrate how model-based approaches can be used to remove this barrier and begin estimating the strength of coevolutionary selection indirectly using routinely collected data, thus uncovering cryptic coevolution in more typical communities. By allowing the distribution of coevolutionary selection to be estimated across genomes, phylogenies, and communities and over deep timescales, these novel approaches have the potential to revolutionize the way we study coevolution. As we develop a road map to these next-generation approaches, we highlight recent studies making notable progress in this direction.

Download full-text PDF

Source
http://dx.doi.org/10.1086/717436DOI Listing

Publication Analysis

Top Keywords

uncovering cryptic
8
coevolution
8
cryptic coevolution
8
coevolution wild
8
reciprocally specialized
8
specialized species
8
species pairs
8
study coevolution
8
coevolutionary selection
8
coevolution abstractstudies
4

Similar Publications

Long-read RNA sequencing enables full-length chimeric transcript annotation of transposable elements in lung adenocarcinoma.

BMC Cancer

March 2025

Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

Background: Transposable elements (TEs), which constitute nearly half of the human genome, have long been regarded as genomic "dark matter". However, their reactivation in tumor cells, resulting in the production of TE-chimeric transcripts (TCTs), has emerged as a potential driver of cancer progression. The complexity and full extent of these transcripts remain elusive, largely due to the limitations of short-read next-generation sequencing technologies.

View Article and Find Full Text PDF

How cryptic animal vectors of fungi can influence forest health in a changing climate and how to anticipate them.

Appl Microbiol Biotechnol

March 2025

Faculty of Environment and Natural Resources, Chair of Pathology of Trees, University of Freiburg, Freiburg, Germany.

Fungal spores are usually dispersed by wind, water, and animal vectors. Climate change is accelerating the spread of pathogens to new regions. While well-studied vectors like bark beetles and moths contribute to pathogen transmission, other, less-recognized animal species play a crucial role at different scales.

View Article and Find Full Text PDF

Quill mites of the family Syringophilidae (Acariformes: Prostigmata) are highly specialised avian ectoparasites that inhabit feather quills. Despite their widespread occurrence, their diversity, distribution, and host associations remain poorly understood. This study examined the diversity and ecological interactions of syringophilid mites parasitising Euphoninae hosts.

View Article and Find Full Text PDF

Cryptic genetic variants exert minimal or no phenotypic effects alone but have long been hypothesized to form a vast, hidden reservoir of genetic diversity that drives trait evolvability through epistatic interactions. This classical theory has been reinvigorated by pan-genome sequencing, which has revealed pervasive variation within gene families and regulatory networks, including extensive cis-regulatory changes, gene duplication, and divergence between paralogs. Nevertheless, empirical testing of cryptic variation's capacity to fuel phenotypic diversification has been hindered by intractable genetics, limited allelic diversity, and inadequate phenotypic resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!