The advent of content-centric networks and Small Cell Networks (SCN) has resulted in the exponential growth of data for both uplink and downlink transmission. Data caching is considered one of the popular solutions to cater to the resultant challenges of network congestion and bottleneck of backhaul links in B5G networks. Caching for uplink transmission in distributed B5G scenarios has several challenges such as duplicate matching of contents, mobile station's unawareness about the cached contents, and the storage of large content size. This paper proposes a cache framework for uplink transmission in distributed B5G SCNs. Our proposed framework generates comprehensive lists of cache contents from all the Small Base Stations (SBSs) in the network to remove similar contents and assist uplink transmission. In addition, our framework also proposes content matching at a Mobile Station (MS) in contrast to an SBS, which effectively improves the energy and spectrum efficiency. Furthermore, large size contents are segmented and their fractions are stored in the distributed cache to improve the cache hit ratio. Our analysis shows that the proposed framework outperforms the existing schemes by improving the energy and spectrum efficiency of both access and core networks. Compared to the existing state of the art, our proposed framework improves the energy and spectrum efficiency of the access network by 41.28% and 15.58%, respectively. Furthermore, the cache hit ratio and throughput are improved by 9% and 40.00%, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113608PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268294PLOS

Publication Analysis

Top Keywords

uplink transmission
12
proposed framework
12
energy spectrum
12
spectrum efficiency
12
small cell
8
transmission distributed
8
distributed b5g
8
improves energy
8
cache hit
8
hit ratio
8

Similar Publications

In this paper, we demonstrated a novel bidirectional high-speed transmission system integrating a free-space optical (FSO) communication with a 5G wireless link, utilizing a high-power erbium-doped fibre amplifier (EDFA) for enhanced loss compensation. The system supports downlink rates of 1-Gb/s/4.5-GHz and 10-Gb/s at 24-GHz and 39-GHz, and an uplink rate of 10-Gb/s/28-GHz.

View Article and Find Full Text PDF

Bidirectional high-speed optical wireless communication with tunable large field of view assisted by liquid crystal metadevice.

Nanophotonics

November 2024

State Key Laboratory of Optical Communication Technologies and Networks, China Information Communication Technologies Group Corporation (CICT), Wuhan, China.

Beam-steered infrared (IR) light communication has gained tremendous attention as one of the solutions of congested wireless communication traffic. High performance active beam-steering devices play a crucial role in data allocation and exchange. Conventional beam-steering devices such as spatial light modulator (SLM) and micro-electrical mechanical system (MEMS) mirror and the current emerging nonmechanical beam-steering metasurface-based devices are challenging to realize a large tunable steering angle beyond several degrees, which significantly hinders the spatial application of optical wireless communications (OWC).

View Article and Find Full Text PDF

The advancement of cellular networks requires updating measurement protocols to better study radiofrequency electromagnetic field (RF-EMF) exposure emitted from devices and base stations. This paper aims to present a novel activity-based microenvironmental survey protocol to measure environmental, auto-induced downlink (DL), and uplink (UL) RF-EMF exposure in the era of 5G. We present results when applying the protocol in Switzerland.

View Article and Find Full Text PDF

High-capacity optical interconnects with short reach are hugely demanded driven by the exponential growth of data traffic. In this work, four-channel wavelength division multiplexing (WDM) uplink/downlink twin single-sideband (twin-SSB) signals are implemented by a wavelength selective switch (WSS) at once, which simplifies the structure of multi-channel SSB transmitters and reduces the cost of high-capacity optical interconnect. Compared to a double sideband scheme, it has been experimentally proven that the performance of SSB transmission over standard single-mode fiber (SSMF) at C-band with an ultra-high baud rate has been greatly improved, which has the ability to effectively overcome the power fading induced by chromatic dispersion in an intensity modulation and direct detection (IM/DD) system.

View Article and Find Full Text PDF

This paper considers uplink and downlink transmissions in a network with radio frequency-powered Internet of Things sensing devices. Unlike prior works, for uplinks, these devices use framed slotted Aloha for channel access. Another key distinction is that it considers uplinks and downlinks scheduling over multiple time slots using only causal information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!