Autologous fat grafting is among the safest and most effective treatments for soft-tissue restoration and augmentation, and many efforts have been made to improve its efficiency, including adipose-derived stem cell (ASC) supplementation. Here, we investigated the role of Notch ligand Delta-like ligand 4 (Dll4) in angiogenesis within grafted fat and its effect on graft retention, as well as the effect of Dll4 inhibition on ASC supplementation. Using a murine fat graft model, we investigated the expression of Dll4 in fat grafts and assessed the graft volume, vascularity, and perfusion within the graft, and ASC differentiation patterns depending on the blockade of Dll4. The underlying mechanism of Dll4 inhibition on ASC supplemented fat grafts was investigated using transcriptome analysis. Dll4 was highly expressed in vascular endothelial cells (ECs) within grafted fat, where Dll4-blocking antibody treatment-induced angiogenesis, promoting fat graft retention. In addition, its effect on fat graft retention was synergistically improved when ASCs were concomitantly supplemented. The expression of junctional proteins was increased in ECs, and inflammatory processes were downregulated in grafted fat upon ASC supplementation and Dll4 inhibition. Dll4 inhibition induced vascularization within the grafted fat, thereby promoting graft retention and exhibiting synergistic effects with concomitant ASC supplementation. This study serves as a basis for developing new potential therapeutic approaches targeting Dll4 to improve graft retention after cell-assisted transfer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299511PMC
http://dx.doi.org/10.1093/stcltm/szac034DOI Listing

Publication Analysis

Top Keywords

graft retention
24
dll4 inhibition
20
asc supplementation
16
grafted fat
16
fat graft
16
fat
11
dll4
10
graft
9
fat grafting
8
adipose-derived stem
8

Similar Publications

Engineered biomaterials in stem cell-based regenerative medicine.

Life Med

August 2023

Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.

Stem cell-based regenerative therapies, which harness the self-renewal and differentiation properties of stem cells, have been in the spotlight due to their widespread applications in treating degenerative, aging, and other, generally intractable diseases. Therapeutically effective hematopoietic stem cells, mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells have been used in numerous basic and translational studies with exciting results. However, pre-/post-transplantation issues of poor cell survival and retention, uncontrolled differentiation, and insufficient numbers of cells engrafted into host tissues are the major challenges in stem cell-based regenerative therapies.

View Article and Find Full Text PDF

Introduction: Veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS) is a potentially life-threatening condition characterised by obstruction of the small veins of the liver. Although typically associated with haematopoietic stem cell transplantation, VOD/SOS may also occur following intensive multimodal chemotherapy regimens. In children, symptoms of VOD/SOS are refractory thrombocytopaenia, weight gain, hepatomegaly, ascites and fluid retention, hyperbilirubinaemia and sometimes right upper quadrant pain.

View Article and Find Full Text PDF

Background: The importance of parathyroid gland preservation in thyroid surgery has been well recognized; however, the rapid identification of the parathyroid gland, particularly the inferior parathyroid gland (IPG), remains challenging. This study aimed to evaluate the effectiveness of retrograde inferior parathyroid protection technique (RIPPT) based on thymus preservation.

Methods: A total of 236 patients were enrolled in this study between August 2019 and December 2020.

View Article and Find Full Text PDF

Comparison of cadmium pathways in a high Cd accumulating cultivar versus a low Cd accumulating cultivar of Theobroma cacao L.

Plant Physiol Biochem

January 2025

Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université G. Eiffel, ISTerre, Grenoble, France. Electronic address:

Understanding cadmium (Cd) pathways in cacao trees is critical for developing Cd mitigation strategies. This study investigates whether Cd uptake and translocation mechanisms differ between a low and a high Cd-accumulating cacao cultivar. We sampled three replicate trees of each cultivar, and a grafted cultivar that shared the same scion as the low Cd accumulator but had a different rootstock.

View Article and Find Full Text PDF

Tumor-targeted near-infrared/ultraviolet-triggered photothermal/gas therapy nanoplatform for effective cancer synergistic therapy.

Colloids Surf B Biointerfaces

January 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!