Diabetes mellitus affects an increasing proportion of the population, and is projected to double by 2060. Comorbidities contribute to an interrupted healing process which is delayed, prolonged, and associated with increased susceptibility to infection and unresolved inflammation. This leads to chronic nonhealing wounds and potential amputation. Here, the use of a bioactive angiogenic peptide-based hydrogel, SLan, is examined to improve early wound healing in diabetic rats, and its performance is compared to clinically utilized biosynthetic peptide-based materials such as Puramatrix. Streptozotocin-treated diabetic rats underwent 8 mm biopsy wounding in their dorsum. Wounds are treated with either Low (1 w%) SLan, High (4 w%) SLan, phosphate buffered saline (PBS), Puramatrix, or K2 (an unfunctionalized nonbioactive control sequentially similar to SLan), covered with Tegaderm, and monitored on for a month; animals are sacrificed for histomorphic analyses and immunostaining. Pharmacokinetic analysis showing no trafficking of peptides from the wound into the circulation. SLan groups show similar wound contraction as control groups (Puramatrix, PBS, and K2), however, showing marked improvement in healing in earlier time points, including increased deposition of new mature blood vessels. Altogether the results suggest this material can be used to "jumpstart" the diabetic wound healing process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288527PMC
http://dx.doi.org/10.1002/mabi.202200067DOI Listing

Publication Analysis

Top Keywords

wound healing
12
early wound
8
healing process
8
diabetic rats
8
wound
5
healing
5
slan
5
angiogenic hydrogels
4
hydrogels accelerate
4
accelerate early
4

Similar Publications

Engineered Au@MOFs silk fibroin-based hydrogel phototherapy platform for enhanced wound healing performance.

Int J Biol Macromol

January 2025

School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:

Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy.

View Article and Find Full Text PDF

In situ growth of ZIF-8 nanoparticles on pure chitosan nanofibrous membranes for efficient antimicrobial wound dressings.

Int J Biol Macromol

January 2025

Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:

Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.

View Article and Find Full Text PDF

Chronic NaAsO exposure promotes migration and invasion of prostate cancer cells by Akt/GSK-3β/β-catenin/TCF4 axis-mediated epithelial-mesenchymal transition.

Ecotoxicol Environ Saf

January 2025

Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Urology, Chaohu Hospital of Anhui Medical University, Chaohu 238000, China. Electronic address:

Inorganic arsenic is a Class I human Carcinogen. However, the role of chronic inorganic arsenic exposure on prostate cancer metastasis still unclear. This study aimed to investigate the effects and mechanism of chronic NaAsO exposure on migration and invasion of prostate cancer cells.

View Article and Find Full Text PDF

Background: Acne is an inflammatory skin disease afflicting the majority of the world's population at some point in their lifetime, and is seen to be chronic in about 50% of cases. Acne leads to significant social withdrawal, depression, and disfiguring scars in many cases. Available treatments are characterized by high rates of relapse, dangerous side effects, and social stigma, which often leads to poor patient compliance and treatment failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!