A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intelligent Telehealth in Pharmacovigilance: A Future Perspective. | LitMetric

Pharmacovigilance improves patient safety by detecting and preventing adverse drug events. However, challenges exist that limit adverse drug event detection, resulting in many adverse drug events being underreported or inaccurately reported. One challenge includes having access to large data sets from various sources including electronic health records and wearable medical devices. Artificial intelligence, including machine learning methods, such as natural language processing and deep learning, can detect and extract information about adverse drug events, thus automating the pharmacovigilance process and improving the surveillance of known and documented adverse drug events. In addition, with the increased demand for telehealth services, for managing both acute and chronic diseases, artificial intelligence methods can play a role in detecting and preventing adverse drug events. In this review, we discuss two use cases of how artificial intelligence methods may be useful to improve the quality of pharmacovigilance and the role of artificial intelligence in telehealth practices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112241PMC
http://dx.doi.org/10.1007/s40264-022-01172-5DOI Listing

Publication Analysis

Top Keywords

adverse drug
24
drug events
20
artificial intelligence
16
detecting preventing
8
preventing adverse
8
intelligence methods
8
adverse
6
drug
6
events
5
intelligent telehealth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!