External surface engineering of metal-organic framework nanoparticles (MOF NPs) is emerging as an important design strategy, leading to optimized chemical and colloidal stability. To date, most of the MOF surface modifications have been performed either by physical adsorption or chemical association of small molecules or (preformed) polymers. However, most of the currently employed approaches cannot precisely control the polymer density, and dynamic modifications at the surfaces on demand have been a challenging task. Here, we introduce a general approach based on covalent modification employing alkoxyamines as a versatile tool to modify the outer surface of MOF nanoparticles (NPs). The alkoxyamines serve as initiators to grow polymers from the MOF surface via nitroxide-mediated polymerization (NMP) and allow dynamic attachment of small molecules via a nitroxide exchange reaction (NER). The successful surface modification and successive surface polymerization are confirmed via time-of-flight secondary ion mass spectrometry (ToF-SIMS), size exclusion chromatography (SEC), and nuclear magnetic resonance (NMR) spectroscopy. The functionalized MOF NPs exhibit high suspension stability and good dispersibility while retaining their chemical integrity and crystalline structure. In addition, electron paramagnetic resonance spectroscopy (EPR) studies prove the dynamic exchange of two different nitroxide species via NER and further allow us to quantify the surface modification with high sensitivity. Our results demonstrate that alkoxyamines serve as a versatile tool to dynamically modify the surface of MOF NPs with high precision, allowing us to tailor their properties for a wide range of potential applications, such as drug delivery or mixed matrix membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.2c00085 | DOI Listing |
PLoS One
January 2025
AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America.
T cell immunotherapy success is dependent on effective levels of antigen receptor expressed at the surface of engineered cells. Efforts to optimize surface expression in T cell receptor (TCR)-based therapeutic approaches include optimization of cellular engineering methods and coding sequences, and reducing the likelihood of exogenous TCR α and β chains mispairing with the endogenous TCR chains. Approaches to promote correct human TCR chain pairing include constant region mutations to create an additional disulfide bond between the two chains, full murinization of the constant region of the TCR α and β sequences, and a minimal set of murine mutations to the TCR α and β constant regions.
View Article and Find Full Text PDFBackground: Recent advances in automatic face recognition have increased the risk that de-identified research imaging data could be re-identified from face imagery in brain scans.
Method: An ADNI committee of independent imaging experts evaluated 11 published techniques for face-deidentification ("de-facing") and selected four algorithms (FSL-UK Biobank, HCP/XNAT, mri_reface, and BIC) for formal testing using 183 longitudinal scans of 61 racially and ethnically diverse ADNI participants, evaluated by their facial feature removal on 3D rendered surfaces (confirming sufficient privacy protection) and by comparing measurements from ADNI routine image analyses on unmodified vs. de-faced images (confirming negligible side effects on analyses).
Alzheimers Dement
December 2024
All India Institute of Medical Sciences, New Delhi, India.
Background: Recent research on Alzheimer's disease (AD) has highlighted that the oxidative damage is the earliest event of disease. These oxidative modifications are closely associated with inflammatory molecules. It is necessary to explore these two pathways with AD pathophysiology and targeted for therapeutic intervention.
View Article and Find Full Text PDFBiointerphases
January 2025
Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China.
The special structure of eyes and the existence of various physiological barriers make ocular drug delivery one of the most difficult problems in the pharmaceutical field. Considering the problems of patient compliance, local administration remains the preferred method of drug administration in the anterior part of eyes. However, local administration suffers from poor bioavailability, need for frequent administration, and systemic toxicity.
View Article and Find Full Text PDFAnal Chem
January 2025
Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens 157 71, Greece.
This work describes fully integrated multifolding electrochemical paper-based devices (ePADs) for enhanced multiplexed voltammetric determination of heavy metals (Zn(II), Cd(II), and Pb(II)) using tunable passive preconcentration. The paper devices integrate five circular sample preconcentration layers and a 3-electrode electrochemical cell. The hydrophobic barriers of the devices are drawn by pen-plotting with hydrophobic ink, while the electrodes are deposited by screen-printing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!