A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protective effects of Radix Isatidis polysaccharide ameliorates obesity via promotion AMPK pathway in high-fat-diet-induced obese rats and 3T3-L1 adipocyte cells. | LitMetric

AI Article Synopsis

  • The study investigates the impact of Radix Isatidis polysaccharide (RIP) on obesity, focusing on its effects and mechanisms in both rats and fat cells.
  • In obese rats given RIP, significant improvements were observed in body weight, fat accumulation, and metabolic health, while in 3T3-L1 cells, RIP reduced lipid buildup and sugar use.
  • The findings suggest that RIP works by activating the AMPK signaling pathway and lowering the levels of key genes involved in fat formation, indicating its potential as a treatment for obesity.

Article Abstract

Objectives: The purpose of this paper is to ascertain the effect and mechanism of Radix Isatidis polysaccharide (RIP) on obesity.

Methods: High fat diet (HFD)-induced obese rats and the MDI-induced 3T3-L1 adipocyte cells were established to evaluate the ameliorated obesity effect and mechanism from RIP.

Key Findings: Experiments in vivo show that oral administration of RIP has significant preventive effects on HFD-induced obesity and metabolic disorders in rats. With treatment of RIP (20, 40 and 80 mg/kg BW), the body weight, fat accumulation, adipocyte cell size, serum lipid levels and antioxidant enzyme activity were progressively improved. On the other hand, the treatment of 3T3-L1 cells with RIP (25, 50 and 100 mg/L) led to a decrease in lipid accumulation and glucose consumption. In addition, during adipogenesis in 3T3-L1 cells, RIP remarkably down-regulated mRNA levels of peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein-α (C/EBPα), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS), acetyl-CoA carboxylase and glycerol-3-phosphate dehydrogenase. Furthermore, after RIP treatment, the protein expression of PPARγ, C/EBPα, FAS, HMG-CoA reductase and acetyl-CoA synthetase-1 (AceCS1) were significantly decreased and the expression of p-AMPK was increased.

Conclusion: These results highlight the potential of RIP for obesity interventions and suggest that RIP inhibited adipocyte differentiation and lipid synthesis by activating adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signalling pathway and down-regulating the expression of major adipogenic transcription factors, PPARγ, C/EBPα, etc.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jpp/rgac027DOI Listing

Publication Analysis

Top Keywords

radix isatidis
8
isatidis polysaccharide
8
obese rats
8
3t3-l1 adipocyte
8
adipocyte cells
8
rip
8
3t3-l1 cells
8
cells rip
8
pparγ c/ebpα
8
protective effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!