Proton transfer (PT) reactions are fundamental to numerous chemical and biological processes. While sub-picosecond PT involving electronically excited states has been extensively studied, little is known about ultrafast PT triggered by photoionization. Here, we employ femtosecond optical pump-probe spectroscopy and quantum dynamics calculations to investigate the ultrafast proton transfer dynamics of the aqueous phenol radical cation (PhOH˙). Analysis of the vibrational wave packet dynamics reveals unusually short dephasing times of 0.18 ± 0.02 ps and 0.16 ± 0.02 ps for the PhOH˙ O-H wag and bend frequencies, respectively, suggestive of ultrafast PT occurring on the ∼0.1 ps timescale. The reduced potential energy surface obtained from calculations shows that PT is barrierless when it is coupled to the intermolecular hindered translation between PhOH˙ and the proton-acceptor water molecule. Quantum dynamics calculations yield a lifetime of 193 fs for PhOH˙, in good agreement with the experimental results and consistent with the PT reaction being mediated by the intermolecular O⋯O stretch. These results suggest that photoionization can be harnessed to produce photoacids that undergo ultrafast PT. In addition, they also show that PT can serve as an ultrafast deactivation channel for limiting the oxidative damage potential of radical cations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp00505k | DOI Listing |
Org Biomol Chem
December 2024
Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany.
We introduce two water-soluble excited state intramolecular proton transfer (ESIPT) based fluorescent turn-on probes responding to inorganic polyphosphates. These ESIPT probes enable specific detection of short-chain inorganic polyphosphates over a range of different condensed phosphates. The probes are weakly emissive in their off-state due to the blocking of ESIPT by Cu coordination.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
South China University of Technology, School of Chemistry and Chemical Engineering, Wushan St., 510640, Guangzhou, CHINA.
The proceeding of electrochemical CO2 reduction reaction (CO2RR) requires the formation of active hydrogen species for CO2 protonation, while traditional catalysts fail to balance the rate of hydrogen supply and CO2 protonation. Herein, we propose a "hydrogen on demand" mechanism, in which the polarity of the adsorbed CO2 is enhanced to allow the capture of hydrogen from water without forming free hydrogen species, realizing the matching rate of hydrogen supply and CO2 protonation. As a proof of concept, we construct Zn-N sites modified by Se atoms, allowing the proceeding of CO2RR under the "hydrogen on demand" mechanism with superior efficiency.
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan.
This study investigates the mechanism of prototropic tautomerization in metal-bound asymmetric pyrazole (R-PzH) ligands during Cu(II)-mediated PzH-MeCN coupling reactions. Intrinsic prototropic tautomerization of metal-bound ligands has not been previously documented. Various new bis-pyrazolylamidino Cu(II) complexes, [Cu(R-Pz(HNC(Me)))(ClO)], from the coupling reaction, and tetrakis pyrazole Cu(II) complexes, [Cu(R-PzH)(ClO)], with symmetric and asymmetric -monosubstituted R-PzH ligands were synthesized and characterized.
View Article and Find Full Text PDFBiosci Rep
December 2024
Universidade Nova de Lisboa Instituto de Tecnologia Quimica e Biologica Antonio Xavier, Oeiras e São Julião da Barra, Portugal.
Multicentre redox proteins participate in diverse metabolic processes, such as redox shuttling, multielectron catalysis, or long-distance electron conduction. The detail in which these processes can be analysed depends on the capacity of experimental methods to discriminate the multiple microstates that can be populated while the protein changes from the fully reduced to the fully oxidized state. The population of each state depends on the redox potential of the individual centres and on the magnitude of the interactions between the individual redox centres with their neighbours.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.
Proton transfer plays a crucial role in various chemical and biological processes. A major theoretical challenge in simulating proton transfer arises from the quantum nature of the proton. The constrained nuclear-electronic orbital (CNEO) framework was recently developed to efficiently and accurately account for nuclear quantum effects, particularly quantum nuclear delocalization effects, in quantum chemistry calculations and molecular dynamics simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!