A one-dimensional organic-inorganic hybrid perovskite material [3.3.0-dabco]PbBr (1) was synthesized by the reaction of 1,5-diazabicyclo[3.3.0]octane (3.3.0-dabco) with PbBr in concentrated HBr aqueous solution. Differential scanning calorimetry, dielectric measurements, and variable-temperature structural analyses revealed that compound 1 exhibits two successive structural phase transitions from 222 to at 387 K () and then to 6/ at 436 K (), accompanied by two pairs of dielectric anomalies with a clear one at and an unobvious one at . In addition, compound 1 shows a robust second harmonic generation (SHG) effect between SHG-OFF and SHG-ON states during its centrosymmetric to non-centrosymmetric symmetry breaking phase transition at .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt01040b | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
The development of photoresponsive ferroelastics, which couple light-induced macroscopic mechanical and microscopic domain properties, represents a frontier in materials science with profound implications for advanced functional applications. In this study, we report the rational design and synthesis of two new organic-inorganic hybrid ferroelastic crystals, (MA)(MeN)[Fe(CN)(NO)] (MA = methylammonium) () and (MA)(MeNOH)[Fe(CN)(NO)] (), using a dual-organic molecular design strategy that exploits hydrogen-bonding interactions for tailoring ferroelastic properties. Specifically, exhibits a two-step phase transition at 138 and 242 K, while the introduction of a hydroxyl group in stabilizes its ferroelastic phase to a significantly higher temperature, achieving a phase transition at 328 K, 86 K above that of .
View Article and Find Full Text PDFSmall
January 2025
Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, 2628 CN, The Netherlands.
Miniaturization of next-generation active neural implants requires novel micro-packaging solutions that can maintain their long-term coating performance in the body. This work presents two thin-film coatings and evaluates their biostability and in vivo performance over a 7-month animal study. To evaluate the coatings on representative surfaces, two silicon microchips with different surface microtopography are used.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
The confining effect is essential to regulate the activity and stability of single-atom catalysts (SACs), but the universal fabrication of confined SACs is still a great challenge. Here, various lattice-confined Pt SACs supported by different carriers are constructed by a universal co-reduction approach. Notably, Pt single atoms confined in the lattice of Ni(OH) (Pt/Ni(OH)) with a high electron-deficient state exhibit excellent activity for basic hydrogen evolution reaction (HER).
View Article and Find Full Text PDFDalton Trans
January 2025
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, China.
In this work, we successfully prepared four POM-based organic-inorganic hybrids, namely, [(CHN)(CHN)][PMoO] (1), [(CHN)(CHN)][PMoO] (2), [(CHN)][PMoO]·4HO (3), and [(CHN)][PMoO] (4) (where CHN = pyridine, CHN = pyrazine, CHN = 2,7-diamino-1,3,4,6,8,9-hexaazaspiro[4.4] nonane, and CHN = 3-amino-1,2,4-triazole), using a hydrothermal method. Compounds 1 and 2 exhibited a lamellar three-dimensional structure.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Twisted halide perovskite bilayers, a type of moiré material, show square moiré patterns with exciting optical properties. Atomic-scale structure analysis and its correlation with properties are difficult to achieve due to the extreme sensitivity of organic-inorganic halide perovskites to the illuminated electron beam in conventional/scanning transmission electron microscopy. Here, we developed a low-dose exit wave reconstruction methodology with a real-space resolution of one angstrom at ∼50 e/Å, which recovers the phase information on the moiré fringes in CHNHPbI (MAPbI) twisted perovskite bilayers at atomic scale, enabling detailed structural analysis of defects and corresponding strain distribution in such moiré materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!