AI Article Synopsis

Article Abstract

A one-dimensional organic-inorganic hybrid perovskite material [3.3.0-dabco]PbBr (1) was synthesized by the reaction of 1,5-diazabicyclo[3.3.0]octane (3.3.0-dabco) with PbBr in concentrated HBr aqueous solution. Differential scanning calorimetry, dielectric measurements, and variable-temperature structural analyses revealed that compound 1 exhibits two successive structural phase transitions from 222 to at 387 K () and then to 6/ at 436 K (), accompanied by two pairs of dielectric anomalies with a clear one at and an unobvious one at . In addition, compound 1 shows a robust second harmonic generation (SHG) effect between SHG-OFF and SHG-ON states during its centrosymmetric to non-centrosymmetric symmetry breaking phase transition at .

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt01040bDOI Listing

Publication Analysis

Top Keywords

organic-inorganic hybrid
8
hybrid perovskite
8
perovskite material
8
phase transition
8
lead bromide
4
bromide organic-inorganic
4
material showing
4
showing reversible
4
reversible dual
4
dual phase
4

Similar Publications

The development of photoresponsive ferroelastics, which couple light-induced macroscopic mechanical and microscopic domain properties, represents a frontier in materials science with profound implications for advanced functional applications. In this study, we report the rational design and synthesis of two new organic-inorganic hybrid ferroelastic crystals, (MA)(MeN)[Fe(CN)(NO)] (MA = methylammonium) () and (MA)(MeNOH)[Fe(CN)(NO)] (), using a dual-organic molecular design strategy that exploits hydrogen-bonding interactions for tailoring ferroelastic properties. Specifically, exhibits a two-step phase transition at 138 and 242 K, while the introduction of a hydroxyl group in stabilizes its ferroelastic phase to a significantly higher temperature, achieving a phase transition at 328 K, 86 K above that of .

View Article and Find Full Text PDF

Miniaturization of next-generation active neural implants requires novel micro-packaging solutions that can maintain their long-term coating performance in the body. This work presents two thin-film coatings and evaluates their biostability and in vivo performance over a 7-month animal study. To evaluate the coatings on representative surfaces, two silicon microchips with different surface microtopography are used.

View Article and Find Full Text PDF

Fabricating Lattice-Confined Pt Single Atoms With High Electron-Deficient State for Alkali Hydrogen Evolution Under Industrial-Current Density.

Adv Mater

January 2025

State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.

The confining effect is essential to regulate the activity and stability of single-atom catalysts (SACs), but the universal fabrication of confined SACs is still a great challenge. Here, various lattice-confined Pt SACs supported by different carriers are constructed by a universal co-reduction approach. Notably, Pt single atoms confined in the lattice of Ni(OH) (Pt/Ni(OH)) with a high electron-deficient state exhibit excellent activity for basic hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

In this work, we successfully prepared four POM-based organic-inorganic hybrids, namely, [(CHN)(CHN)][PMoO] (1), [(CHN)(CHN)][PMoO] (2), [(CHN)][PMoO]·4HO (3), and [(CHN)][PMoO] (4) (where CHN = pyridine, CHN = pyrazine, CHN = 2,7-diamino-1,3,4,6,8,9-hexaazaspiro[4.4] nonane, and CHN = 3-amino-1,2,4-triazole), using a hydrothermal method. Compounds 1 and 2 exhibited a lamellar three-dimensional structure.

View Article and Find Full Text PDF

Twisted halide perovskite bilayers, a type of moiré material, show square moiré patterns with exciting optical properties. Atomic-scale structure analysis and its correlation with properties are difficult to achieve due to the extreme sensitivity of organic-inorganic halide perovskites to the illuminated electron beam in conventional/scanning transmission electron microscopy. Here, we developed a low-dose exit wave reconstruction methodology with a real-space resolution of one angstrom at ∼50 e/Å, which recovers the phase information on the moiré fringes in CHNHPbI (MAPbI) twisted perovskite bilayers at atomic scale, enabling detailed structural analysis of defects and corresponding strain distribution in such moiré materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!