Mucins are heavily glycosylated proteins secreted by various cell types, to protect the epithelial surface of the gastrointestinal tract from damage. Currently, increasing studies provided evidence to suggest that mucins play an essential role in regulating tumor progression. However, the role of mucins and the underpinning mechanism of how mucins drive melanoma progression remains elusive. In this study, we first demonstrated that mucin 21 (MUC21) expression was significantly upregulated in metastatic melanoma tissues, and a higher MUC21 expression resulted in poor overall survival in melanoma patients by The Cancer Genome Atlas database analysis. In vitro, MUC21 overexpression markedly promoted proliferative properties and aggressive behavior of melanoma cell A375 and A875, as assessed by Cell Counting Kit-8 and transwell assay. In mechanism, we proved that MUC21 suppressed expression of SLITRK5, an integral membrane protein, leading to activation of prosurvival hedgehog pathway and sustained melanoma development. More importantly, we found that combination of hedgehog pathway inhibitor cyclopamine and chemotherapy revealed an improved anticancer effect in MUC21 overexpression xenograft model. Altogether, our study described a novel role of MUC21 in regulating tumor progression, which offers a promising target for melanoma diagnosis and therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbin.11817 | DOI Listing |
Clin Transl Med
January 2025
Department of Dermatology and Allergy, University Hospital of Munich, Ludwig-Maximilian-University, Munich, Germany.
Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.
View Article and Find Full Text PDFOncoimmunology
December 2025
Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
Immune checkpoint blockade (ICB) has significantly improved the survival for many patients with advanced malignancy. However, fewer than 50% of patients benefit from ICB, highlighting the need for more effective immunotherapy options. High-dose interleukin-2 (HD IL-2) immunotherapy, which is approved for patients with metastatic melanoma and renal cell carcinoma, stimulates CD8 T cells and NK cells and can generate durable responses in a subset of patients.
View Article and Find Full Text PDFCureus
December 2024
Department of Family Medicine, Saint Agnes Medical Center, Fresno, USA.
Melanoma is a malignant disorder of the skin that originates from melanocytes. It is the most aggressive of the skin malignancies. This case study presents a unique case of a 52-year-old male gardener with melanoma on the plantar side of his foot, which progressed to a large ulcer.
View Article and Find Full Text PDFCancer Lett
January 2025
Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA. Electronic address:
Neoadjuvant immunotherapy represents a pioneering approach in the preoperative treatment of cancer, offering novel avenues for tumor reduction and improved patient outcomes by modulating the immune response. This study investigated neoadjuvant immunotherapy using intratumoral administration of mannan-BAM, Toll-like receptor ligands, and antiCD40 antibody (MBTA therapy) followed by surgery in murine models of mouse tumor tissue (MTT) pheochromocytoma, B16-F10 melanoma, and 4T1 and E0771.lmb mammary carcinomas.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
Uveal melanoma (UM) poses a significant lethality, with approximately 50% of those developing metastases surviving less than one year. In the progression of UM, vasculogenic mimicry (VM) induced by hypoxia plays a pivotal role, which also partially explains the resistance of UM to anti-angiogenic therapies. Nevertheless, the crucial molecular mechanisms underlying VM in the progression of UM remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!