Background And Purpose: Osteosarcoma is the most commonly seen type of primary malignant bone tumors in children and adolescents. Partial patients with osteosarcoma cannot tolerate the side effects of chemotherapy drugs. Hence, it is urgent to find anti-osteosarcoma drugs with low side effects. Melittin is an anti-tumor Traditional Chinese Medicine with low side effects. The purpose of this study was to explore the anti-osteosarcoma effect of melittin and its possible molecular mechanisms.

Methods: The effects of melittin on cell growth were detected by CCK-8, clonal formation, and flow cytometry. The related molecules were also investigated by Real-time PCR and Western blot. A xenograft model in nude mice was established to observe the effects of melittin on tumor growth and the related molecular expression was detected by immunohistochemistry.

Results: Melittin can inhibit the proliferation of osteosarcoma 143B cells, reduce colony formation, and induce apoptosis while significantly up-regulating the expression of Bax and Caspase-3 and down-regulating the expression of Bcl-2 proteins. Moreover, treatment with melittin significantly reduced the mRNA and protein levels of β-catenin and Wnt/β- catenin related genes (LRP5, c-Myc, and Survivin) in osteosarcoma 143B cells in vitro. The xenograft model found that melittin significantly inhibited tumor growth and decreased the protein expression levels of β-catenin and Wnt/β- catenin related genes in vivo.

Conclusion: These findings show that melittin could inhibit the growth of osteosarcoma 143B cells, which may be related to the inhibition of Wnt/β-catenin signaling pathway activity and induce apoptosis by up-regulating the ratio of Bax/Bcl-2 in osteosarcoma 143B cells. Therefore, melittin is a promising anti-tumor drug for the treatment of osteosarcoma.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871520622666220509121627DOI Listing

Publication Analysis

Top Keywords

osteosarcoma 143b
20
143b cells
20
side effects
12
effects melittin
12
melittin
10
osteosarcoma
8
wnt/β-catenin signaling
8
signaling pathway
8
low side
8
xenograft model
8

Similar Publications

Dual-specificity phosphatase 3 (DUSP3) is a small-molecule dual-specificity phosphatase whose function has not yet been elucidated. This study investigated the effects of DUSP3 on the biological behavior of osteosarcoma and its potential mechanisms. We performed bioinformatics analysis of DUSP3 using "The Cancer Genome Atlas" and "The Tumor Immune Estimation Resource" databases.

View Article and Find Full Text PDF

Objectives: To investigate the regulatory mechanism of aurora kinase B (AURKB) for promoting malignant phenotype of osteosarcoma cells.

Methods: HA-Vector or HA-AURKB was transfected in 293T cells to identify the molecules interacting with AURKB using immunoprecipitation combined with liquid chromatography-tandem mass spectrometry followed by verification with co-immunoprecipitation and Western blotting. In cultured osteosarcoma cells with lentivirus-mediated RNA interference of AURKB or DHX9 or their overexpression, the changes in cell proliferation, migration, and invasion activities were observed with EDU and Transwell assays.

View Article and Find Full Text PDF

Background: Osteosarcoma, the most prevalent primary bone malignancy in children and adolescents, exhibits high heterogeneity. The CGREF1 gene encodes a novel 301 amino acid classical secreted protein that contains the presumed N-terminal signaling peptide and EF hand motif. However, its role in osteosarcoma remains unclear.

View Article and Find Full Text PDF

The emergence of treatment approaches that integrate conventional phototherapy with additional adjuvant treatments has garnered considerable interest. In this study, we proposed a complex utilizing Fe and polydopamine as a carrier, co-loaded with the nitric oxide initiator L-arginine (L-Arg) and the photosensitizer indocyanine green (ICG), as a potential strategy for the "photothermal/photodynamic/Chemodynamic/nitric oxide gas therapy" of osteosarcoma. Nanoparticles have the ability to undergo degradation within the mildly acidic conditions present in the tumor microenvironment.

View Article and Find Full Text PDF

MMP13 as an effective target of an active trifluoromethyl quinazoline compound against osteosarcoma.

Toxicol Appl Pharmacol

December 2024

Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Clinical College of Guizhou Medical University, Guiyang 550004, China. Electronic address:

Osteosarcoma (OS) is a highly fatal malignant tumor with a high metastatic rate and poor prognosis. Matrix metalloproteinase-13 (MMP13) is involved in OS metastasis. Its increased expression is closely related to distant metastasis and poor prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!