Influenza hemagglutinin that drives viral entry into cells via the membrane fusion process is an up-and-coming antiviral drug target. Herein, we described for the first time the design, synthesis, and biological characteristics of a new class of pentacyclic triterpenoid-based proteolysis targeting chimeras (PROTACs) to enhance the degradation of hemagglutinin target. Among these PROTACs, showed the best degradation effect on the hemagglutinin with a median degradation concentration of 1.44 μM in a ubiquitin and proteasome-dependent manner and broad-spectrum anti-influenza A virus activity but not affected the entry of influenza virus. Moreover, intravenous injection of protected mice against influenza A virus-induced toxic effects. Further diazirine-containing photo-crosslinking mass spectrometric analysis of hemagglutinin complexes indicated crosslinking to Asn15, Thr31, and Asn27, a novel target of hemagglutinin. Taken together, our data revealed that oleanolic acid-based PROTACs could degrade hemagglutinin protein, providing a new direction toward the discovery of potential anti-influenza drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.1c02013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!