DNA metabarcoding is widely used to determine wild animal diets, but whether this technique provides accurate, quantitative measurements is still under debate. To test our ability to accurately estimate the abundance of dietary items using metabarcoding, we fed wild-caught desert woodrats (Neotoma lepida) diets consisting of constant amounts of juniper (Juniperus osteosperma, 15%) and varying amounts of creosote (Larrea tridentata, 1%-60%), cactus (Opuntia sp., 0%-100%) and commercial chow (0%-85%). Using metabarcoding, we compared the representation of items in the original diet samples to that in the faecal samples to test the sensitivity and accuracy of diet metabarcoding, the performance of different bioinformatic pipelines and our ability to correct sequence counts. Metabarcoding, using standard trnL primers, detected creosote, juniper and chow. Different pipelines for assigning taxonomy performed similarly. While creosote was detectable at dietary proportions as low as 1%, we failed to detect cactus in most samples, probably due to a primer mismatch. Creosote read counts increased as its proportion in the diet increased, and we could differentiate when creosote was a minor and major component of the diet. However, we found that estimates of juniper and creosote varied. Using previously suggested methods to correct these errors did not improve accuracy estimates of creosote, but did reduce error for juniper and chow. Our results indicate that metabarcoding can provide quantitative information on dietary composition, but may be limited. We suggest that researchers use caution when quantitatively interpreting diet metabarcoding results unless they first experimentally determine the extent of possible biases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1755-0998.13643DOI Listing

Publication Analysis

Top Keywords

diet metabarcoding
12
metabarcoding
8
juniper chow
8
creosote
7
diet
6
successes limitations
4
limitations quantitative
4
quantitative diet
4
metabarcoding small
4
small herbivorous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!