A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Full-dimensional potential energy surface for the H + CHOH reaction. Theoretical kinetics and dynamics study. | LitMetric

Full-dimensional potential energy surface for the H + CHOH reaction. Theoretical kinetics and dynamics study.

Phys Chem Chem Phys

Área de Química Física, Facultad de Ciencias, and Instituto de Computación Científica Avanzada (ICCAEx). Universidad de Extremadura, Avenida de Elvas S/N, 06006 Badajoz, Spain.

Published: May 2022

The dynamics and kinetics of the abstraction reactions of hydrogen atoms with methanol have been studied using quasi-classical trajectory calculations and variational transition state theory with tunnelling corrections, based on a new analytical potential energy surface (PES). The new PES is a valence-bond/molecular mechanics (VB/MM) expression that provides us with the potential energy for any set of Cartesian coordinates. Two reaction channels are considered: hydrogen abstraction from the methyl group (R1) and hydrogen abstraction from the alcohol group (R2), R1 being much more likely to occur in the wide temperature range under study (250-1000 K), as expected from the lower barrier height. Our dynamic calculations at a collision energy of 20 kcal mol show that the H co-product is produced mainly in its vibrational ground-state and little rotation excitation is found. As for our kinetic results, they agree with those from previous theoretical studies as well as with those from kinetic experimental results (rate constants and kinetic isotopic effects), lending confidence to the analytical PES presented here. Thus, we expect this PES to be a simple yet powerful tool to understand such an important reaction in combustion chemistry at very high temperatures and interstellar chemistry at very low temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp00864eDOI Listing

Publication Analysis

Top Keywords

potential energy
12
energy surface
8
hydrogen abstraction
8
full-dimensional potential
4
energy
4
surface choh
4
choh reaction
4
reaction theoretical
4
theoretical kinetics
4
kinetics dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!