Robotic perception can have simple and effective sensing functions that are unreachable for humans using only the isolated tactile perception method, with the assistance of a triboelectric nanogenerator (TENG). However, the reliability of triboelectric sensors remains a major challenge due to the inherent environmental limitations. Here, an intelligent tactile sensing system that combines a TENG and deep-learning technology is proposed. Using a triboelectric triple tactile sensor array, typical characteristics of each testing material can be maintained stably even under different contact conditions (touch conditions and external environmental conditions) by extracting features from three independent electrical signals as well as the normalized output signals. Furthermore, a convolutional neural network model is integrated, and a high accuracy of 96.62% is achieved in a material identification task. The tactile sensing system is exhibited to an open environment for material identification and the real-time demonstration. Compared to the complex process that humans must integrate multiple sensing (touching and viewing) to accomplish tactile perception, the proposed sensing system shows a huge advantage in cognitive learning for the visually impaired, biomimetic prosthetics, and virtual spaces construction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202203073DOI Listing

Publication Analysis

Top Keywords

sensing system
16
tactile sensing
12
material identification
12
tactile perception
8
sensing
6
tactile
5
open-environment tactile
4
system
4
system simple
4
simple efficient
4

Similar Publications

Background: Musculoskeletal pain (MSKP) disorders entail a significant burden for individuals and healthcare systems. The PainSMART-strategy has been developed aiming to reduce divergences between patients and healthcare practitioners in their understanding of MSKP by providing a shared basis for communication and to facilitate patients' self-management of MSKP. The objective of the PainSMART-project is to evaluate the effects of the PainSMART-strategy as an adjunct to usual physiotherapy management compared to usual physiotherapy management alone.

View Article and Find Full Text PDF
Article Synopsis
  • Food is a multisensory experience, relying on visuals, taste, smell, and, surprisingly, texture to assess nutritional value and safety.
  • Despite being overlooked, texture offers crucial information about food's physical properties, like hardness and liquidity.
  • Recent findings show that some sensory neurons are not limited to specific stimuli; instead, they can respond broadly, indicating greater sensory complexity than previously thought.
View Article and Find Full Text PDF

Background In the healthcare setting, transgender patients are often marginalized, face discrimination and have limited access to high-quality gender-affirming care, such as gender-affirming surgery (GAS). As a result, the available data pertaining to GAS are often based on convenience samples, and the majority of published studies in the US are cross-sectional. Transgender people may undergo GAS to align their bodies with their gender identities.

View Article and Find Full Text PDF

Investigating Smartphone-Based Sensing Features for Depression Severity Prediction: Observation Study.

J Med Internet Res

January 2025

Department of Clinical Psychology and Psychotherapy, Institute of Psychology and Education, Ulm University, Ulm, Germany.

Background: Unobtrusively collected objective sensor data from everyday devices like smartphones provide a novel paradigm to infer mental health symptoms. This process, called smart sensing, allows a fine-grained assessment of various features (eg, time spent at home based on the GPS sensor). Based on its prevalence and impact, depression is a promising target for smart sensing.

View Article and Find Full Text PDF

Background: Pseudomonas aeruginosa's inherent and adapted resistance makes this pathogen a serious problem for antimicrobial treatments. Furthermore, its biofilm formation ability is the most critical armor against antimicrobial therapy, and the virulence factors, on the other hand, contribute to fatal infection and other recalcitrant phenotypic characteristics. These capabilities are harmonized through cell-cell communication called Quorum Sensing (QS), which results in gene expression regulation via three major interconnected circuits: las, rhl, and pqs system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!