Aptamers as Recognition Elements for Electrochemical Detection of Exosomes.

Chem Res Chin Univ

Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, 430074 P. R. China.

Published: May 2022

Exosome analysis is emerging as an attractive noninvasive approach for disease diagnosis and treatment monitoring in the field of liquid biopsy. Aptamer is considered as a promising molecular probe for exosomes detection because of the high binding affinity, remarkable specificity, and low cost. Recently, many approaches have been developed to further improve the performance of electrochemical aptamer based(E-AB) sensors with a lower limit of detection. In this review, we focus on the development of using aptamer as a specific recognition element for exosomes detection in electrochemical sensors. We first introduce recent advances in evolving aptamers against exosomes. Then, we review methods of immobilization aptamers on electrode surfaces, followed by a summary of the main strategies of signal amplification. Finally, we present the insights of the challenges and future directions of E-AB sensors for exosomes analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9094132PMC
http://dx.doi.org/10.1007/s40242-022-2088-8DOI Listing

Publication Analysis

Top Keywords

exosomes detection
8
exosomes
5
aptamers recognition
4
recognition elements
4
elements electrochemical
4
detection
4
electrochemical detection
4
detection exosomes
4
exosomes exosome
4
exosome analysis
4

Similar Publications

Objective: To explore more and better liquid biopsy markers of exosomal microRNAs (exo-miRNAs) in renal interstitial fibrosis (RIF) and to preliminary investigate the biological functions and signaling pathways involved in these markers.

Materials And Methods: High-throughput miRNA sequencing was performed on blood and urine exo-miRNAs from three RIF patients and three healthy volunteers, and differential expression analysis and bioinformatic processing were performed.

Results: There were 13 differentially expressed exo-miRNA (DEexo-miRNA) between RIF and healthy blood, and 20 DEexo-miRNAs in urine.

View Article and Find Full Text PDF

Background: This study introduces the Automated High-purity Exosome isolation-based AD diagnostics system (AHEADx). By analyzing and understanding the molecular cargo (proteins and miRNAs) carried by circulating exosomes, researchers found brain-derived exosome (BDE) levels of P-S396-tau, P-T181-tau, and Aβ1-42 are elevated up to 10 years prior to clinical symptoms. Currently, there is no available technology capable of simultaneously isolating and screening exosomal biomarkers for efficient and personalized precision medicine giving early AD diagnosis.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey.

Background: mRNAs are required to progress cellular processes such as synaptic plasticity and memory formation. Processing bodies (P-bodies) are storage units for mRNAs located at dendritic translation sites, so these mRNAs can participate in synaptic plasticity immediately when needed. P-bodies consist of 3 main proteins: DDX6, 4E-T, and LSM14A.

View Article and Find Full Text PDF

Background: The content of circulating exosomes has been observed to be altered in response to changes in physiological and pathological conditions, and they are detectable in different human fluids such as blood. Studies focused on the quantification of Aβ and tau proteins, as molecules contained within exosomes, suggest that they are related with Alzheimer disease (AD) and frontotemporal dementia (FTD) development, demonstrated that plasma-derived exosome analysis is a good approach for searching for biomarkers in the development of dementia. Our aim is to identify new blood biomarkers to detect the AD or FTD in the Chilean population using machine learning based on exosomal miRNAs.

View Article and Find Full Text PDF

Early prediction of the neoadjuvant therapy efficacy for HER2-positive breast cancer is crucial for personalizing treatment and enhancing patient outcomes. Exosomes, which play a role in tumor development and treatment response, are emerging as potential biomarkers for cancer diagnosis and efficacy prediction. Despite their promise, current exosome detection and isolation methods are cumbersome and time-consuming and often yield limited purity and quantity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!