A family of guanidinium-side-chain functionalized polycarbodiimides has been synthesized by allowing an azido guanidinium salt to react with alkyne polycarbodiimides via the copper catalyzed [3 + 2] cycloaddition (Click) reaction. (-) are cationic/amphiphilic polymers in which the global hydrophilic/hydrophobic balance has been tailored by local alteration of the length of alkyl side chain in the repeat unit of polymers prior to polymerization. The shorter alkyl chains yield water-soluble polymers, -, -, and -. Antibacterial activities of these cationic polycarbodiimides have been investigated for Gram-positive and Gram-negative bacteria that include Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Acinetobacter baumannii. It was observed that the influence of hydrophobic-hydrophilic balance per repeat unit of these polymers have profound effects for both antimicrobial and hemolytic activities. In addition, these polycarbodiimide-guanidinium-triazole conjugates offered moderate to significant antibacterial activity and rapid interaction with red blood cells causing blood precipitation without significant hemolysis in case of -(-). This latter property has the potential to be exploited in the polymer coatings or wound protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/mz200116k | DOI Listing |
ACS Cent Sci
June 2023
Department of Chemistry, University of North Carolina at Chapel Hill; Chapel Hill, North Carolina 27599, United States.
Controlled incorporation of nitrogen into macromolecular skeletons is a long-standing challenge whose resolution would enable the preparation of soft materials with the scalability of man-made plastics and functionality of Nature's proteins. Nylons and polyurethanes notwithstanding, nitrogen-rich polymer backbones remain scarce, and their synthesis typically lacks precision. Here we report a strategy that begins to address this limitation founded on a mechanistic discovery: ring-opening metathesis polymerization (ROMP) of carbodiimides followed by carbodiimide derivatization.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
December 2021
Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
We have successfully synthesized water-soluble neutral and polyelectrolyte helical polycarbodiimides and studied their biological properties. These polymers were prepared by decorating carbodiimide backbones with nonionic, hydrophilic functional groups such as dimethylamine, piperazine, and morpholine. Additionally, the 3° amines present in these functional groups were quaternized using methyl iodide as the alkylating agent to produce their ionic analogs.
View Article and Find Full Text PDFJ Am Chem Soc
November 2014
Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.
The use of single-walled carbon nanotubes (SWCNTs) as near-infrared optical probes and sensors require the ability to simultaneously modulate nanotube fluorescence and functionally derivatize the nanotube surface using noncovalent methods. We synthesized a small library of polycarbodiimides to noncovalently encapsulate SWCNTs with a diverse set of functional coatings, enabling their suspension in aqueous solution. These polymers, known to adopt helical conformations, exhibited ordered surface coverage on the nanotubes and allowed systematic modulation of nanotube optical properties, producing up to 12-fold differences in photoluminescence efficiency.
View Article and Find Full Text PDFACS Macro Lett
March 2012
Department of Chemistry and the Alan G MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080-3021, United States.
A family of guanidinium-side-chain functionalized polycarbodiimides has been synthesized by allowing an azido guanidinium salt to react with alkyne polycarbodiimides via the copper catalyzed [3 + 2] cycloaddition (Click) reaction. (-) are cationic/amphiphilic polymers in which the global hydrophilic/hydrophobic balance has been tailored by local alteration of the length of alkyl side chain in the repeat unit of polymers prior to polymerization. The shorter alkyl chains yield water-soluble polymers, -, -, and -.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!