Several high-throughput antibody-free methods for RNA modification detection from sequencing data have been developed. We present JACUSA2 as a versatile software solution and comprehensive analysis framework for RNA modification detection assays that are based on either the Illumina or Nanopore platform. Importantly, JACUSA2 can integrate information from multiple experiments, such as replicates and different conditions, and different library types, such as first- or second-strand cDNA libraries. We demonstrate its utility, showing analysis workflows for N6-methyladenosine (m6A) and pseudouridine (Ψ) detection on Illumina and Nanopore sequencing data sets. Our software and its R helper package are available as open source solutions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9109409 | PMC |
http://dx.doi.org/10.1186/s13059-022-02676-0 | DOI Listing |
Cell Rep
January 2025
Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA. Electronic address:
tRNA modifications are critical for several aspects of their functions, including decoding, folding, and stability. Using a multifaceted approach encompassing eCLIP-seq and nanopore tRNA-seq, we show that the human tRNA methyltransferase TRMT1L interacts with the component of the Rix1 ribosome biogenesis complex and binds to the 28S rRNA as well as to a subset of tRNAs. Mechanistically, we demonstrate that TRMT1L is responsible for catalyzing N2,N2-dimethylguanosine (mG) solely at position 27 of tRNA-Tyr-GUA.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA. Electronic address:
The tRNA methyltransferase 1 (TRMT1) enzyme catalyzes the N2,N2-dimethylguanosine (m2,2G) modification in tRNAs. Intriguingly, vertebrates encode an additional tRNA methyltransferase 1-like (TRMT1L) paralog. Here, we use a comprehensive tRNA sequencing approach to decipher targets of human TRMT1 and TRMT1L.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
January 2025
Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
Common variable immunodeficiency (CVID) is the most common symptomatic and heterogeneous type of inborn errors of immunity (IEI). However, the pathogenesis process of this disease is often unknown. Epigenetic modifications may be involved in unresolved patients.
View Article and Find Full Text PDFBackground: TAR-DNA-binding protein 43 (TDP43), is a pathologic marker in neurodegenerative diseases including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The aggregation of TDP-43, a crucial RNA-binding protein, is a consequence of post-translational modifications (PTMs) that disrupt its normal function. PTMs such as phosphorylation and ubiquitination contribute to the aberrant accumulation of TDP-43 aggregates, leading to neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People's Republic of China.
Elevated lipoprotein(a) [Lp(a)] levels are increasingly recognized as a significant risk factor for cardiovascular diseases and may also contribute to atrial fibrillation (AF). This review investigated the indirect mechanisms through which Lp(a) may influence AF, including proatherogenic, prothrombotic, and proinflammatory pathways. Traditional lipid-lowering therapies, such as lifestyle modifications and statins, have limited effects on Lp(a) levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!