Background: In hepatocellular carcinoma (HCC), histone deacetylases (HDACs) are frequently overexpressed. This results in chromatin compaction and silencing of tumor-relevant genes and microRNAs. Modulation of microRNA expression is a potential treatment option for HCC. Therefore, we aimed to characterize the epigenetically regulated miR-129-5p regarding its functional effects and target genes to understand its relevance for HCC tumorigenesis.

Methods: Global miRNA expression of HCC cell lines (HLE, HLF, Huh7, HepG2, Hep3B) and normal liver cell lines (THLE-2, THLE-3) was analyzed after HDAC inhibition by miRNA sequencing. An in vivo xenograft mouse model and in vitro assays were used to investigate tumor-relevant functional effects following miR-129-5p transfection of HCC cells. To validate hepatoma-derived growth factor (HDGF) as a direct target gene of miR-129-5p, luciferase reporter assays were performed. Survival data and HDGF expression were analyzed in public HCC datasets. After siRNA-mediated knockdown of HDGF, its cancer-related functions were examined.

Results: HDAC inhibition induced the expression of miR-129-5p. Transfection of miR-129-5p increased the apoptosis of HCC cells, decreased proliferation, migration and ERK signaling in vitro and inhibited tumor growth in vivo. Direct binding of miR-129-5p to the 3'UTR of HDGF via a noncanonical binding site was validated by luciferase reporter assays. HDGF knockdown reduced cell viability and migration and increased apoptosis in Wnt-inactive HCC cells. These in vitro results were in line with the analysis of public HCC datasets showing that HDGF overexpression correlated with a worse survival prognosis, primarily in Wnt-inactive HCCs.

Conclusions: This study provides detailed insights into the regulatory network of the tumor-suppressive, epigenetically regulated miR-129-5p in HCC. Our results reveal for the first time that the therapeutic application of mir-129-5p may have significant implications for the personalized treatment of patients with Wnt-inactive, advanced HCC by directly regulating HDGF. Therefore, miR-129-5p is a promising candidate for a microRNA replacement therapy to prevent HCC progression and tumor metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9109340PMC
http://dx.doi.org/10.1186/s12935-022-02582-2DOI Listing

Publication Analysis

Top Keywords

hcc
12
hcc cells
12
mir-129-5p
10
hepatocellular carcinoma
8
hepatoma-derived growth
8
growth factor
8
hdgf
8
factor hdgf
8
epigenetically regulated
8
regulated mir-129-5p
8

Similar Publications

Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.

Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).

Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.

View Article and Find Full Text PDF

Background: The Prognostic Nutritional Index (PNI), which reflects both nutritional and immune status, has emerged as a potential predictor of survival outcomes in cancer patients. However, its role in forecasting the prognosis of hepatocellular carcinoma (HCC) following curative hepatectomy remains unclear. To further investigate the association between PNI and survival outcomes in HCC patients, we conducted a systematic review and meta-analysis.

View Article and Find Full Text PDF

Most malignant hepatocellular tumors in children are classified as either hepatoblastoma (HB) or hepatocellular carcinoma (HCC), but some tumors demonstrate features of both HB and HCC . These tumors have been recognized under a provisional diagnostic category by the World Health Organization and are distinguished from HB and HCC by a combination of histological, immunohistochemical, and molecular features . Their outcomes and cellular composition remain an open question .

View Article and Find Full Text PDF

Tumor heterogeneity is the substrate for tumor evolution and the linchpin of treatment resistance. Cancer cell heterogeneity is largely attributed to distinct genetic changes within each cell population. However, the widespread epigenome repatterning that characterizes most cancers is also highly heterogenous within tumors and could generate cells with diverse identities and malignant features.

View Article and Find Full Text PDF

Background: Transarterial therapy (TAT), bevacizumab (Bev), and immune checkpoint inhibitors (ICIs) have individually exhibited efficacy in treating advanced-stage hepatocellular carcinoma (HCC). This study aimed to assess the efficacy and safety of the combination of these three treatments as a neoadjuvant modality in patients with locally advanced HCC.

Methods: The primary endpoint is overall survival (OS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!