Background: In infant abuse investigations, dating of skeletal injuries from radiographs is desirable to reach a clear timeline of traumatic events. Prior studies have used infant birth-related clavicle fractures as a surrogate to develop a framework for dating of abuse-related fractures.

Objective: To develop and train a deep learning algorithm that can accurately date infant birth-related clavicle fractures.

Materials And Methods: We modified a deep learning model initially designed for face-age estimation to date infant clavicle fractures. We conducted a computerized search of imaging reports and other medical records at a tertiary children's hospital to identify radiographs of birth-related clavicle fracture in infants ≤ 3 months old (July 2003 to March 2021). We used the resultant database for model training, validation and testing. We evaluated the performance of the deep learning model via a four-fold cross-validation procedure, and calculated accuracy metrics: mean absolute error (MAE), root mean square error (RMSE), intraclass correlation coefficient (ICC) and cumulative score.

Results: The curated database consisted of 416 clavicle radiographs from 213 infants. Average chronological age (equivalent to fracture age) at time of imaging was 24 days. This model estimated the ages of the clavicle fractures with MAE of 4.2 days, RMSE of 6.3 days and ICC of 0.919. On average, 83.7% of the fracture age estimates were accurate to within 7 days of the ground truth.

Conclusion: Our deep learning study provides encouraging results for radiographic dating of infant clavicle fractures. With further development and validation, this model might serve as a virtual consultant to radiologists estimating fracture ages in cases of suspected infant abuse.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00247-022-05380-0DOI Listing

Publication Analysis

Top Keywords

deep learning
20
clavicle fractures
20
infant clavicle
12
birth-related clavicle
12
clavicle
8
virtual consultant
8
infant abuse
8
infant birth-related
8
learning model
8
fracture age
8

Similar Publications

Background: Urinary tract infection (UTI) is a frequent health-threatening condition. Early reliable diagnosis of UTI helps to prevent misuse or overuse of antibiotics and hence prevent antibiotic resistance. The gold standard for UTI diagnosis is urine culture which is a time-consuming and also an error prone method.

View Article and Find Full Text PDF

Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).

Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.

View Article and Find Full Text PDF

Inter-individual variability in symptoms and the dynamic nature of brain pathophysiology present significant challenges in constructing a robust diagnostic model for migraine. In this study, we aimed to integrate different types of magnetic resonance imaging (MRI), providing structural and functional information, and develop a robust machine learning model that classifies migraine patients from healthy controls by testing multiple combinations of hyperparameters to ensure stability across different migraine phases and longitudinally repeated data. Specifically, we constructed a diagnostic model to classify patients with episodic migraine from healthy controls, and validated its performance across ictal and interictal phases, as well as in a longitudinal setting.

View Article and Find Full Text PDF

Automated stenosis estimation of coronary angiographies using end-to-end learning.

Int J Cardiovasc Imaging

January 2025

Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

The initial evaluation of stenosis during coronary angiography is typically performed by visual assessment. Visual assessment has limited accuracy compared to fractional flow reserve and quantitative coronary angiography, which are more time-consuming and costly. Applying deep learning might yield a faster and more accurate stenosis assessment.

View Article and Find Full Text PDF

Objectives: Predicting rheumatoid arthritis (RA) progression in undifferentiated arthritis (UA) patients remains a challenge. Traditional approaches combining clinical assessments and ultrasonography (US) often lack accuracy due to the complex interaction of clinical variables, and routine extensive US is impractical. Machine learning (ML) models, particularly those integrating the 18-joint ultrasound scoring system (US18), have shown potential to address these issues but remain underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!