Transcriptional control of energy metabolism by nuclear receptors.

Nat Rev Mol Cell Biol

Goodman Cancer Institute, McGill University, Montreal, QC, Canada.

Published: November 2022

AI Article Synopsis

  • Transcriptional regulation is crucial for how cells generate energy needed for various functions like growth and movement.
  • Nuclear receptors are key transcription factors that translate signals from hormones and nutrients into specific gene programs that manage energy production and related processes like mitochondrial growth and cellular recycling.
  • Recent research highlights the complexity of nuclear receptors, showcasing their need to coordinate with other factors and integrate various metabolic signals to effectively regulate energy balance in the body.

Article Abstract

Transcriptional regulation of catabolic pathways is a central mechanism by which cells respond to physiological cues to generate the energy required for anabolic pathways, transport of molecules and mechanical work. Nuclear receptors are members of a superfamily of transcription factors that transduce hormonal, nutrient, metabolite and redox signals into specific metabolic gene programmes, and thus hold a major status as regulators of cellular energy generation. Nuclear receptors also regulate the expression of genes involved in cellular processes that are implicated in energy production, including mitochondrial biogenesis and autophagy. Recent advances in genome-wide approaches have considerably expanded the repertoire of both nuclear receptors and metabolic genes under their direct transcriptional control. To fine-tune the expression of their target genes, nuclear receptors must act cooperatively with other transcription factors and coregulator proteins, integrate signals from key metabolic sensory systems such as the AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) complexes and synchronize their activities with the biological clock. Therefore, nuclear receptors must function as more than molecular switches for small lipophilic ligands - as initially ascribed - but rather must be capable of orchestrating a large ensemble of input signals. Therefore, a primary role for several nuclear receptors is to serve as the focal point of transcriptional hubs in energy metabolism: their molecular task is to receive and transduce multiple systemic and intracellular metabolic signals to maintain energy homeostasis from individual cells to the whole organism.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41580-022-00486-7DOI Listing

Publication Analysis

Top Keywords

nuclear receptors
28
transcriptional control
8
energy metabolism
8
transcription factors
8
nuclear
7
receptors
7
energy
6
transcriptional
4
control energy
4
metabolism nuclear
4

Similar Publications

[Advances in the study of viruses inhibiting the production of advanced autophagy or interferon through Rubicon to achieve innate immune escape].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China. *Corresponding authors, E-mail:

The innate immune response is the first line of defense for the host against viral infections. Targeted degradation of pathogenic microorganisms through autophagy, in conjunction with pattern recognition receptors synergistically inducing the production of interferon (IFN), constitutes an important pathway for the body to resist viral infections. Rubicon, a Run domain Beclin 1-interacting and cysteine-rich domain protein, has an inhibitory effect on autophagy and IFN production.

View Article and Find Full Text PDF

[High mobility group protein B1(HMGB1) promotes myeloid dendritic cell maturation and increases Th17 cell/Treg cell ratio in patients with immune primary thrombocytopenia].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Hematologic Disease Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Wulumuqi 830011, China. *Corresponding author, E-mail:

Objective This study investigated the regulatory effect of high mobility group protein B1 (HMGB1) in the peripheral blood of patients with primary immune thrombocytopenia (ITP) on myeloid dendritic cells (mDC) and Th17/regulatory T cells (Treg) balance. Methods The study enrolled 30 newly diagnosed ITP patients and 30 healthy controls.Flow cytometry was used to measure the proportion of mDC, Th17, and Treg cells in the peripheral blood of ITP patients and healthy controls.

View Article and Find Full Text PDF

PbsNRs: predict the potential binders and scaffolds for nuclear receptors.

Brief Bioinform

November 2024

Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, School of Life Sciences, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China.

Nuclear receptors (NRs) are a class of essential proteins that regulate the expression of specific genes and are associated with multiple diseases. In silico methods for prescreening potential NR binders with predictive binding ability are highly desired for NR-related drug development but are rarely reported. Here, we present the PbsNRs (Predicting binders and scaffolds for Nuclear Receptors), a user-friendly web server designed to predict the potential NR binders and scaffolds through proteochemometric modeling.

View Article and Find Full Text PDF
Article Synopsis
  • FT596 is a novel cancer therapy using iPSC-derived CAR NK cells targeting CD19, designed to assess its safe dosage and effectiveness alone and with rituximab in patients with B-cell lymphoma.
  • This phase 1 trial involved patients with relapsed or refractory B-cell lymphoma, administering FT596 after chemotherapy, with separate regimens for those receiving rituximab and those who did not.
  • The study measured potential side effects while determining the optimal dose of FT596 and allowed modifications to the treatment based on patient tolerance and response.
View Article and Find Full Text PDF

Background: N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!