Threads of modern pedicle screws can vary greatly in design. It is difficult to assess which interplay of design features is particularly advantageous for screw anchorage. This study aims to increase the understanding of the anchorage behaviour between screw and cancellous bone. Pull-out tests of six pedicle screws in two sizes each were performed on three densities of biomechanical test material. More general screw characteristics were derived from the screw design and evaluated using the test data. Selected screws were tested on body donor material. Some screw characteristics, such as compacting, are well suited to compare the different thread designs of screws with tapered core. The combination of two characteristics, one representing bone compacting and one representing thread flank area, appears to be particularly advantageous for assessing anchorage behaviour. With an equation derived from these characteristics, the pull-out strength could be calculated very accurately (mean deviation 1%). Furthermore, findings are corroborated by tests on donor material. For screws with tapered core, the design demands for good anchorage against pull-out from cancellous bone change with material density. With sufficient bone quality, screws with a high compacting effect are advantageous, while with low bone density a high thread flank area also appears necessary for better screw anchorage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110386 | PMC |
http://dx.doi.org/10.1038/s41598-022-11824-2 | DOI Listing |
Int J Surg Case Rep
January 2025
University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia; Department of Orthopedic Surgery, Hospital Mongi Slim La Marsa, Tunisia.
Introduction And Importance: Osteoblastoma is a rare benign bone tumor, accounting for 1 % of primary bone tumors, often affecting the spine and sacrum. Accurate diagnosis is essential for appropriate treatment and prognosis.
Case Presentation: A 19-year-old male presented with two years of persistent nocturnal radicular and low back pain unresponsive to anti-inflammatory medications.
Surg Pract Sci
December 2024
Spine Surgery Department, Vietduc University Hospital, Viet Nam.
This descriptive longitudinal study aims to assess the risk factors for severe thoracic and lumbar vertebral compression fractures before and after surgery, contributing to preventive knowledge enhancement in communities and effective treatment management. The study involved 34 patients diagnosed with thoracic and lumbar vertebral compression fractures requiring surgery with bio-cement-augmented pedicle screws between June 2021 and June 2022. Postoperative complications, notably adjacent segment injury, were monitored, and patients received osteoporosis management post-surgery.
View Article and Find Full Text PDFJ Korean Neurosurg Soc
January 2025
Department of Neurosurgery, University of Opole, Opole, Poland.
Cement-augmented pedicle screw instrumentation is a widely accepted method for managing osteoporotic fractures, but it carries inherent risks, particularly related to cement leakage and embolism. This study aimed to analyze a clinical case of complications following cement fixation and provide a detailed review of relevant literature. A 70-year-old patient underwent transpedicular screw instrumentation from L2-L4 with polymethyl methacrylate augmentation, which resulted in cement leakage into the spinal canal and subsequent pulmonary embolism.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo, JPN.
Osteoporotic vertebral fractures (OVFs) in elderly patients pose challenges due to bone destruction and surgical risks. This case report describes a minimally invasive approach using calcium phosphate cement (CPC) vertebroplasty and short fusion with cement augmentation of pedicle screws (CAPS) in a 91-year-old woman with severe OVF. The patient underwent CPC vertebroplasty at L1 and CAPS fixation at T12-L2, followed by osteoporosis medication.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang, PR China.
Rationale: Alkaptonuria (AKU) is a rare, inherited metabolic disease caused by deficient activity of homogentisic acid oxidase, leading to the accumulation of homogentisic acid and its oxidized product, benzoquinone acetic acid. These compounds cause black discoloration of cartilage, degeneration, inflammation, and calcification of intervertebral disks and large joints, resulting in pain and impaired quality of life. Despite its debilitating effects, there are no curative treatments for AKU, and management remains supportive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!