Water clusters and density fluctuations in liquid water based on extended hierarchical clustering methods.

Sci Rep

State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China.

Published: May 2022

The microscopic structures of liquid water at ambient temperatures remain a hot debate, which relates with structural and density fluctuations in the hydrogen bond network. Here, we use molecular dynamics simulations of liquid water to study the properties of three-dimensional cage-like water clusters, which we investigate using extended graph-based hierarchical clustering methods. The water clusters can cover over 95% of hydrogen bond network, among which some clusters maximally encompass thousands of molecules extending beyond 3.0 nm. The clusters imply fractal behaviors forming percolating networks and the morphologies of small and large clusters show different scaling rules. The local favored clusters and the preferred connections between adjacent clusters correspond to lower energy and conformational entropy depending on cluster topologies. Temperature can destroy large clusters into small ones. We show further that the interior of clusters favors high-density patches. The water molecules in the small clusters, inside which are the void regarded as hydrophobic objects, have a preference for being more tetrahedral. Our results highlight the properties and changes of water clusters as the fundamental building blocks of hydrogen bond networks. In addition, the water clusters can elucidate structural and density fluctuations on different length scales in liquid water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110331PMC
http://dx.doi.org/10.1038/s41598-022-11947-6DOI Listing

Publication Analysis

Top Keywords

water clusters
20
liquid water
16
density fluctuations
12
hydrogen bond
12
clusters
12
water
10
hierarchical clustering
8
clustering methods
8
structural density
8
bond network
8

Similar Publications

Drought is a detrimental abiotic stress that severely limits wheat growth and productivity worldwide by altering several physiological processes. Thus, understanding the mechanisms of drought tolerance is essential for the selection of drought-resilient features and drought-tolerant cultivars for wheat breeding programs. This exploratory study evaluated 14 wheat genotypes (13 relatively tolerant, one susceptible) for drought endurance based on flag leaf physiological and biochemical traits during the critical grain-filling stage in the field conditions.

View Article and Find Full Text PDF

First report of causing leaf spot on in China.

Plant Dis

January 2025

Guizhou University, Guizhou University, Guiyang, Guiyang, Guizhou, China, 550025;

During a field study in the Baili Azalea Forest Area in Guizhou Province, China (27°12'N, 105°48'E) between May and July 2023, symptoms of leaf spot were observed on Franch. The incidence of leaf spot on leaves was about 12% in a field of 1 hm2, significantly reducing their ornamental and economic value. The affected leaves bore irregular, grey-white lesions with distinct dark brown borders, accompanied by black conidiomata.

View Article and Find Full Text PDF

Background: Geographical factors can affect infectious disease transmission, including SARS-CoV-2, a virus that is spread through respiratory secretions. Prioritization of surveillance and response activities during a pandemic can be informed by a pathogen's geographical transmission patterns. We assessed the relationship between geographical factors and SARS-CoV-2 prevalence in Zambia.

View Article and Find Full Text PDF

Trace detection of antibiotics in wastewater using tunable core-shell nanoparticles SERS substrate combined with machine learning algorithms.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania; Department of Physics, Kaunas University of Technology, Studentų St. 50, LT-51423 Kaunas, Lithuania. Electronic address:

Surface-enhanced Raman scattering (SERS) show great potential for rapid and highly sensitive detection of trace amounts of contamination from the environment in the surface aquatic ecosystem. The widespread use of antibiotics has resulted in serious degradation of the water environment in the past few years, and their substantial residual contamination of wastewater has a harmful effect on ecosystems, which is associated with the development of antibiotic-resistant bacterial strains. However, in this study, a novel approach of core-shell nanoparticles GNRs@1,4-BDT@Ag was used for the quantitative measurement of the concentration of antibiotics in wastewater solutions using the SERS technique coupled with computational methods.

View Article and Find Full Text PDF

Distinct response of nitrogen metabolism to exogenous cadmium (Cd) in river sediments with and without Cd contamination history.

Water Res

January 2025

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

The role of metal resistance on nitrogen metabolism function and community resilience against Cd is important for elucidating the evolutionary dynamics of key ecological functions in river ecosystems. In this study, the response of nitrogen transforming function to Cd exposure in river sediments from the Yangtze River Basin with varying levels of heavy metal contamination history (Cd-contaminated and Cd-free sediments) was compared to understand how Cd influenced nitrogen metabolism under varying metal resistance conditions. The results showed that chronic and persistent Cd pollution of sediments caused an elevation of transport efflux metal resistance genes (MRGs) and a reduction in the uptake MRGs, leading to a stronger tolerance to Cd for Cd-contaminated sediment than Cd-free ones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!