Recent research has greatly focused on the environmental water supplement of rivers individually and independently. However, a comprehensive and integrated view of all rivers in the basin is simultaneously required in closed basins leading to lakes and wetlands. This has affected Lake Urmia, which is the second largest saltwater lake in the world. It has been in danger of drying up in recent years as a result of not allocating the required environmental flow (e-flow) due to the increase in water resource consumption in the agricultural sector and climate changes. In this study, a method derived from the flow duration curve shifting (FDCS) method is presented in addition to explaining the possibility of providing the e-flow of rivers leading to the lake. The method can make the least amount of change in the hydrological characteristics of rivers while providing the volume of required water by the ecosystem of lakes or downstream wetlands. Unlike the conventional method which presents the results on a monthly basis, the above-mentioned method is based on daily data of hydrometric stations and can calculate the amount of the environmental requirement of rivers in real-time according to the upstream inlet of the river. This method has been used in the Urmia Lake basin. According to the results, it can provide the environmental requirement of the lake by allocating 70.5% of the annual flow of rivers and thus can save the lake and the ecosystem of the region from the current critical conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110391PMC
http://dx.doi.org/10.1038/s41598-022-10262-4DOI Listing

Publication Analysis

Top Keywords

urmia lake
8
environmental requirement
8
rivers
7
lake
7
method
6
environmental
5
integrated hydrologic
4
hydrologic approach
4
approach assessment
4
assessment rivers
4

Similar Publications

Seasonal Dynamics of the Bacterial Community in Lake Urmia, a Hypersaline Ecosystem.

Biology (Basel)

January 2025

Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan 49166-85915, Iran.

Lake Urmia is one of the world's most unique and hypersaline aquatic ecosystems. The aim of this study was to investigate the diversity, abundance and frequency of these microorganisms in water samples from the eastern regions of the lake over four seasons. Amplicon sequencing for the 16S rRNA gene was performed to examine bacterial communities in the samples.

View Article and Find Full Text PDF

In this research, the effect of seed halopriming with plasma activated water (PAW) on wheat germination parameters have been studied. Response surface methodology was used to investigate the effect of three factors including: 1) type of water (distilled water, 0.2 and 0.

View Article and Find Full Text PDF

The Urmia Lake Basin has been severely affected by the unbalanced exploitation of water resources. To better manage the use of integrated water resources, the coupled SWAT-MODFLOW-NWT was adopted for the Mahabad Plain in the Urmia Lake Basin, N.W.

View Article and Find Full Text PDF

Socio-hydrological lock-in; an emergent phenomenon in the face of anthropogenic drought.

J Environ Manage

January 2025

Eawag - Swiss Federal Institute for Aquatic Science and Technology, Dübendorf, Switzerland; Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, IN, USA. Electronic address:

This study investigates the drought of three major terminal lakes: Great Salt Lake, Salton Sea, and Lake Urmia, driven by socio-hydrological lock-in-a phenomenon characterized by feedback loops between human activities and environmental processes. Previous research has linked this drying to socio-hydrological lock-in, where rational actions by individuals collectively lead to suboptimal outcomes, exacerbating water scarcity and ecological degradation. Despite existing studies, a critical knowledge gap remains in understanding how these feedback mechanisms operate across different socio-economic and ecological contexts.

View Article and Find Full Text PDF

Newly formed playas, such as those resulting from the desiccation of Lake Urmia (LU) in northwest Iran, are significant global dust sources with implications for human health and the environment. Stabilizing these surfaces affordably can be achieved using locally sourced magnesium-enriched brine. To evaluate this approach, for LU playa, we examined the accumulation of ions, minerals deposition, and salt crust (Cr) formation in LU brine under both natural and laboratory conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!