Heat shock protein 90 (Hsp90) has evolved as a cancerous cell growth regulator by stabilising various oncogenic kinases. Upon the Hsp90 inhibition, the expression of its client proteins is downregulated and thus leads to denaturation of cellular proteins and cancer cell death. Hsp90 inhibitors, particularly those naturally derived from plants, fungi and bacteria, have gained substantial interest as a feasible therapeutic approach for cancer treatment due to their diverse pharmacological properties. In order to gain insights into the potential development of more efficacious Hsp90 inhibitors for cancer treatment, this review is conducted to analyse both in vitro and in vivo data on the chemical and biological activities of natural Hsp90 inhibitors. The systematic search was conducted in databases (PubMed, Scopus and Web of Science) with terms "Hsp90 inhibitor" and "cancer", prompting a total of 61 articles after screening with inclusion criteria. This comprehensive review systematically summarised the efficacy of 14 different classes of naturally derived Hsp90 inhibitors in cancerous cell and animal tumour models by consolidating the primary outcomes in terms of IC, reduction of tumour size and physicochemical properties. The detailed pharmacodynamic (the structure-activity relationship, mechanism of action) and pharmacokinetics (toxicity, oral bioavailability) of these Hsp90 inhibitors together with the study limitations were discussed. Collectively, these findings emphasise the necessity of comprehending the molecular mechanisms as well as the correlation of Hsp90 and its relative client proteins to drive the generation of viable Hsp90 inhibitors with improved pharmacodynamic and pharmacokinetic profiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phrs.2022.106260 | DOI Listing |
Life Sci
January 2025
Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China. Electronic address:
As a common side effect of radiotherapy, radiation-induced intestinal injury (RIII) greatly affects the prognosis of patients and the efficacy of radiotherapy. Current therapeutic strategies for RIII are still very limited. Thus, the identification of effective radioprotective agents is of great importance.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, 37130-001, MG, Brazil.
Histone Deacetylase 6 (HDAC6) is an intriguing therapeutic target in cancer re-search, distinguished as the only HDAC family member predominantly located in the cyto-plasm. HDAC6 features two catalytic domains and a unique ubiquitin-binding domain, which sets it apart from other HDACs. Beyond its role in histone deacetylation, HDAC6 targets vari-ous nonhistone substrates, such as α-tubulin, cortactin, Heat Shock Protein 90 (HSP90), and Heat Shock Factor 1 (HSF1).
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, Turkey.
Purpose: The incidence of breast cancer has been increasing in recent years, and monotherapy approaches are not sufficient alone in the treatment of breast cancer. In the combined therapy approach, combining two or three different agents in lower doses can mitigate the side effects on living cells and tissues caused by high doses of chemical agents used alone. ABT-263 (navitoclax), a clinically tested Bcl-2 family protein inhibitor, has shown limited success in clinical trials due to the development of resistance to monotherapy in breast cancer cells.
View Article and Find Full Text PDFMolecules
December 2024
Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
Breast cancer remains one of the most prevalent and lethal malignancies in women, particularly the estrogen receptor-positive (ER+) subtype, which accounts for approximately 70% of cases. Traditional endocrine therapies, including aromatase inhibitors, selective estrogen receptor degraders/antagonists (SERDs), and selective estrogen receptor modulators (SERMs), have improved outcomes for metastatic ER+ breast cancer. However, resistance to these agents presents a significant challenge.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Neurology, Second Affiliated Hospital of Army Medical University (Xinqiao Hospital), Chongqing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!