Chlorhexidine is used widely to prevent the spread of bacteria in the hospital environment. However, bacteria are increasingly becoming tolerant to chlorhexidine. Here we investigated clinical characteristics, tolerance mechanisms, and molecular epidemiology of chlorhexidine-tolerant Pseudomonas aeruginosa. According to the proposed epidemiological cut-off value to determine chlorhexidine tolerance (50 µg/mL) in P. aeruginosa, 32 chlorhexidine-tolerant isolates were detected from 294 P. aeruginosa isolates, which accounted for 10.9%. Our results indicated MICs of chlorhexidine-tolerant strains were 64 µg/mL. Patient's data showed chlorhexidine tolerance was associated with following factors: hospital length of stay, ICU admission, length of stay in ICU, invasive procedure, duration of mechanical ventilation, chlorhexidine usage, and occurrence of nosocomial pneumonia. Tolerance mechanisms were analyzed by efflux pump inhibition test, qRT-PCR, and serial passage experiment. Increased expression of efflux pump genes mexA, mexC, mexE and mexX, and decreased expression of oprD were observed in chlorhexidine-tolerant and chlorhexidine-induced strains, which suggested that hyperexpression of Mex-Opr efflux pump was the main mechanism. Moreover, serial passage experiment found chlorhexidine-induced strains showed decreased susceptibility to tested antibiotics, which illustrated that long-term exposure of P. aeruginosa to chlorhexidine could result in multidrug-resistant (MDR) or cross-resistance phenotypes. MLST and PFGE analysis demonstrated the homology of 32 chlorhexidine-tolerant strains was low and no obvious clonal transmission was observed. We comprehensively investigated the development and molecular mechanisms of chlorhexidine-tolerant P. aeruginosa, which revealed that the control and surveillance of chlorhexidine tolerance should be more strict. Moreover, it seems to make sense to avoid the continuous or unreasonable application of chlorhexidine in hospital settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijantimicag.2022.106605 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany.
Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).
View Article and Find Full Text PDFPharmaceutics
December 2024
Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
Curcumin appears to be well tolerated and effective for managing chronic inflammatory pain, but its poor oral bioavailability has been a hurdle in its use as a therapeutic agent. The current study was performed to characterize a novel co-amorphous compound based on curcumin/L-arginine 1:2 (CAC12). : Stability, solubility and structural characterization of the CAC12 were carried out by spectrometry techniques and in vitro assays, whereas the antinociceptive and anti-inflammatory effects were evaluated by CFA or carrageenan models.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Corteva Agriscience, 7000 NW 62nd Ave, Johnston, IA 50131, USA.
Maize lethal necrosis (MLN) is a significant threat to food security in Sub-Saharan Africa (SSA), with limited commercial inbred lines displaying tolerance. This study analyzed the transcriptomes of four commercially used maize inbred lines and a non-adapted inbred line, all with varying response levels to MLN. RNA-Seq revealed differentially expressed genes in response to infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV), the causative agents of MLN.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the HO and O content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!