Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Natural products (NPs) constitute a large reserve of bioactive compounds useful for drug development. Recent advances in high-throughput technologies facilitate functional analysis of therapeutic effects and NP-based drug discovery. However, the large amount of generated data is complex and difficult to analyze effectively. This limitation is increasingly surmounted by artificial intelligence (AI) techniques but more needs to be done. Here, we present and discuss two crucial issues limiting NP-AI drug discovery: the first is on knowledge and resource development (data integration) to bridge the gap between NPs and functional or therapeutic effects. The second issue is on NP-AI modeling considerations, limitations and challenges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.drudis.2022.05.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!