A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Establishing a novel 3D printing bioinks system with recombinant human collagen. | LitMetric

Establishing a novel 3D printing bioinks system with recombinant human collagen.

Int J Biol Macromol

School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China.

Published: June 2022

Bioinks are one of the key elements in realizing three-dimensional (3D) bioprinting. However, bioinks prepared from conventional collagen are hindered to their further applications due to concerns of collagen purity, unstable mechanical properties, and low solubility under neutralized conditions. This study aimed to develop a reliable UV-curable bioink system from a novel water-soluble recombinant human collagen (RHC). RHC was modified by methacrylic anhydride (MAA) and later crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) to obtain Pro-RHCMA. H nuclear magnetic resonance (H NMR) confirmed the methacryloyl grafts, Fourier transform-infrared spectroscopy (FT-IR) illustrated the chemical crosslinking in producing the Pro-RHCMA. Internal morphology, mechanical properties and degradation of UV cured boinks were MAA and EDC/NHS modification-dependent. Photorheological properties and printability of the bioinks were determined. Cellular bioactivities were sustained within the printed bioinks, validating the bioinks biocompatibility in vitro. Finally, qRT-PCR revealed that the Pro-RHCMA bioinks provided a cell-friendly microenvironment for human umbilical vein endothelial cells (HUVECs) and human foreskin fibroblasts (HFFs), by supporting the expression of extracellular matrix (ECM) and angiogenesis-associated proteins, respectively. Taken together, this novel RHC-based bioink system shows great potential in tissue engineering and regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.05.088DOI Listing

Publication Analysis

Top Keywords

recombinant human
8
human collagen
8
mechanical properties
8
bioink system
8
bioinks
7
establishing novel
4
novel printing
4
printing bioinks
4
bioinks system
4
system recombinant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!