Polycyclic aromatic hydrocarbons (PAHs) have the potential to cause cancer, teratogenicity, and mutagenesis in humans. Long-term plant safe production relies on how PAHs are transported and coordinated across organs. However, the acropetal transfer mechanism of PAHs in staple crop stems, particularly in xylem, a critical path, is unknown. Herein, we first confirmed the presence of specific interaction between the proteins and phenanthrene by employing the magnetic phenanthrene-bound bead immunoassay and label free liquid chromatograph mass spectrometer (LC-MS/MS), suggesting that peroxidase (uniprot accession: A0A3B5XXD0) and unidentified proteins (uniprot accession: A0A3B6LUC6) may function as the carriers to load and acropetally translocate phenanthrene (a model PAH) in wheat xylem. This specified binding of protein-phenanthrene may form through hydrophobic interactions in the conservative binding region, as revealed by protein structural investigations and molecular docking. To further investigate the role of these proteins in phenanthrene solubilization, phenanthrene exposure was conducted: a substantial quantity of peroxidase was produced; an unusually high expression of uncharacterized proteins was observed, indicating their positive effects in the acropetal transfer of phenanthrene in wheat xylem. These data confirmed that the two proteins are crucial in the solubilization of phenanthrene in wheat xylem sap. Our findings provide fresh light on the molecular mechanism of PAH loading in plant xylem and techniques for ensuring the security of staple crops and improving the efficacy of phytoremediation in a PAH-contaminated environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.155919 | DOI Listing |
BMC Plant Biol
December 2024
Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
Here we report growth promoting effects of Cupriavidus metallidurans on plants, and provide evidence for the underlying mechanisms of the growth promoting effects. In a series of greenhouse experiments on tomato, maize, and wheat, complemented with genetic analysis of Arabidopsis mutants, we tested the effects of the bacteria on seed germination, root and shoot growth, metal uptake, gas exchange parameters, and stomatal and xylem traits in maize, wheat, and tomato plants. Results showed that the bacteria substantially accelerate seed germination, increase shoot and root biomass, enhance photosynthetic performance, acidify the rhizosphere, increase metal uptake, and modulate stomatal and xylem traits.
View Article and Find Full Text PDFPLoS One
November 2024
Department of Plant Production, Faculty of Agriculture, Lebanese University, Beirut, Lebanon.
The study aimed to explore suitable substrates comprising locally available hardwood sawdusts for the cultivation of Shiitake (Lentinula edodes) in Lebanon. Sawdusts of oak (OS), maple (MAP), and eucalyptus (EUC) were used alone or in combination, supplemented equally by wheat bran (WB). Results showed that complete mycelia run, fruiting, and harvest dates were the minimum in OS-WB: 800-200 by 72.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
October 2024
ICFRE-Himalayan Forest Research Institute, Shimla, 171013, India.
Environ Res
December 2024
School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China. Electronic address:
Environ Sci Pollut Res Int
November 2024
Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!