AI Article Synopsis

Article Abstract

Objectives: Healthcare organizations that maintain and process Electronic Medical Records are at risk of cyber-attacks, which can lead to breaches of confidentiality, financial harm, and possible interference with medical care. State-of-the-art methods in cryptography have the potential to offer improved security of medical records; nonetheless, healthcare providers may be reluctant to adopt and implement them. The objectives of this study were to assess current data management and security procedures; to identify attitudes, knowledge, perceived norms, and self-efficacy regarding the adoption of advanced cryptographic techniques; and to offer guidelines that could help policy-makers and data security professionals work together to ensure that patient data are both secure and accessible.

Methods: We conducted 12 in-depth semi-structured interviews with managers and individuals in key cybersecurity positions within Israeli healthcare organizations. The interviews assessed perceptions of the feasibility and benefits of adopting advanced cryptographic techniques for enhancing data security. Qualitative data analysis was performed using thematic network mapping.

Results: Key data security personnel did not perceive advanced cybersecurity technologies to be a high priority for funding or adoption within their organizations. We identified three major barriers to the adoption of advanced cryptographic technologies for information security: barriers associated with regulators; barriers associated with healthcare providers; and barriers associated with the vendors that develop cybersecurity systems.

Conclusions: We suggest guidelines that may enhance patient data security within the healthcare system and reduce the risk of future data breaches by facilitating cross-sectoral collaboration within the healthcare ecosystem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117802PMC
http://dx.doi.org/10.4258/hir.2022.28.2.132DOI Listing

Publication Analysis

Top Keywords

advanced cryptographic
16
data security
16
adoption advanced
12
cryptographic techniques
12
medical records
12
barriers associated
12
data
9
healthcare organizations
8
healthcare providers
8
patient data
8

Similar Publications

This research introduces a novel hybrid cryptographic framework that combines traditional cryptographic protocols with advanced methodologies, specifically Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP) and Genetic Algorithms (GA). We evaluated several cryptographic protocols, including AES-ECB, AES-GCM, ChaCha20, RSA, and ECC, against critical metrics such as security level, efficiency, side-channel resistance, and cryptanalysis resistance. Our findings demonstrate that this integrated approach significantly enhances both security and efficiency across all evaluated protocols.

View Article and Find Full Text PDF

Memristive technology mitigates the memory wall issue in von Neumann architectures by enabling in-memory data processing. Unlike traditional complementary metal-oxide semiconductor (CMOS) technology, memristors provide a new paradigm for implementing cryptographic functions and security considerations. While prior research explores memristors for cryptographic functions and side-channel attack vulnerabilities, our study uniquely addresses memristor-oriented countermeasures.

View Article and Find Full Text PDF

Intelligent two-phase dual authentication framework for Internet of Medical Things.

Sci Rep

January 2025

Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia.

The Internet of Medical Things (IoMT) has revolutionized healthcare by bringing real-time monitoring and data-driven treatments. Nevertheless, the security of communication between IoMT devices and servers remains a huge problem because of the inherent sensitivity of the health data and susceptibility to cyber threats. Current security solutions, including simple password-based authentication and standard Public Key Infrastructure (PKI) approaches, typically do not achieve an appropriate balance between security and low computational overhead, resulting in the possibility of performance bottlenecks and increased vulnerability to attacks.

View Article and Find Full Text PDF

The vast interconnection of resource-constrained devices and the immense amount of data exchange in the Internet of Things (IoT) environment resulted in the resurgence of various security threats. This resource-constrained environment of IoT makes data security a very challenging task. Recent trends in integrating lightweight cryptographic algorithms have significantly improved data security in the IoT without affecting performance.

View Article and Find Full Text PDF

Vehicle-to-everything (V2X) communication has many benefits. It improves fuel efficiency, road safety, and traffic management. But it raises privacy and security concerns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!