Phenylboronic acid-modified polymaleic anhydride-F127 micelles for pH-activated targeting delivery of doxorubicin.

Colloids Surf B Biointerfaces

School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China. Electronic address:

Published: August 2022

Phenylboronic acid (PBA) is a tumor-targeting molecule which selectively recognizes sialic acid (SA) overexpressed in tumors. In the study, PBA, F127 and ethanolamine were conjugated with poly(maleic anhydride) by one-step reaction to form amphiphilic polymer for doxorubicin encapsulation. Two drug-carrying micelles with different mass ratio of polymer to drug were prepared by dialysis method to study effect of PBA on doxorubicin release, tumor-targeting and antitumor activity. The study results showed that doxorubicin release from the formulations was acid-sensitive and affected by the polymer dosage, and its acid-induced release behavior improved its insertion into DNA base pairs. Formulation with high polymer dosage showed better tumor targeting and antitumor activity, and activity of inhibiting HepG2 with higher content of SA-containing glycosphingolipids was higher than that of anti-B16. In vivo studies on the activity of B16-bearing mice showed that the doxorubicin-loaded micelles could inhibit the tumor growth and were safer than free doxorubicin. Thus, the PBA-modified nano-polymer micelles have potential biomedical applications due to their nanostructure and tumor-targeting ability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2022.112559DOI Listing

Publication Analysis

Top Keywords

study pba
8
doxorubicin release
8
antitumor activity
8
polymer dosage
8
doxorubicin
5
phenylboronic acid-modified
4
acid-modified polymaleic
4
polymaleic anhydride-f127
4
micelles
4
anhydride-f127 micelles
4

Similar Publications

Excessive oxidative stress and persistent inflammation are key factors contributing to the formation of diabetic chronic wounds. Delivering antioxidants through a microenvironment-responsive hydrogel system can effectively enhance wound healing and tissue regeneration. In this study, we developed a novel pH- and glucose-responsive hydrogel using Schiff base reaction and phenyl borate group for intelligent antioxidant release.

View Article and Find Full Text PDF

Background: As parental burnout is increasingly recognised for its severe impact on parents and children, identifying factors that exacerbate or alleviate this condition is crucial. Reliable assessment tools in clinical settings are essential to detect those at risk of or experiencing burnout, enabling timely intervention.

Aims/objectives: This study aims to adapt the Parental Burnout Assessment for use in Iceland and evaluate its psychometric properties while exploring how personal and socio-demographic factors influence parental burnout.

View Article and Find Full Text PDF

Objective: This study utilized three cell lines: normal prostate epithelial RWPE-1, androgen-dependent LNCaP, and androgen-independent PC3. We investigated the inhibitory effects of phenylboronic acid (PBA)'s inhibitory effect on cellular proliferation due to its ability to disrupt microtubule formation in prostate cancer cell lines. Additionally, this study aimed to assess the cytotoxic effects of PBA on prostate cancer cells using twodimensional (2D) and three-dimensional (3D) cell culture models.

View Article and Find Full Text PDF

The initiation of calcium oxalate (CaOx) kidney stone formation is highly likely to stem from injury to the renal tubular epithelial cells (RTECs) induced by stimulation from an aberrant urinary environment. CHAC1 plays a critical role in stress response mechanisms by regulating glutathione metabolism. Endoplasmic reticulum (ER) stress and ferroptosis are demonstrated to be involved in stone formation.

View Article and Find Full Text PDF

A Modified Polydopamine Nanoparticle Loaded with Melatonin for Synergistic ROS Scavenging and Anti-Inflammatory Effects in the Treatment of Dry Eye Disease.

Adv Healthc Mater

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.

Dry eye disease (DED) is a multifaceted ocular surface disorder that significantly impacts patients' daily lives and imposes a substantial economic burden on society. Oxidative stress, induced by the overproduction of reactive oxygen species (ROS), is a critical factor perpetuating the inflammatory cycle in DED. Effectively scavenging ROS is essential to impede the progression of DED.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!