Production and transformation of organic matter driven by algal blooms in a shallow lake: Role of sediments.

Water Res

State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.

Published: July 2022

AI Article Synopsis

  • The study investigates how organic matter (OM) generated from phytoplankton growth during algal blooms impacts the carbon cycle, particularly in shallow eutrophic lakes like Lake Chaohu in China.
  • It compares two experimental treatments: one with sediments and one without, revealing that sediments significantly influenced the concentrations of biogenic elements, resulting in much higher levels of chlorophyll a, nutrients, and metals in the presence of sediments.
  • The results suggest that while particulate organic matter (POM) is dominated by protein-like components and has lower molecular weight, dissolved organic matter (DOM) becomes more abundant afterward and features higher molecular weight and humic-like components, indicating a complex transformation process influenced by sediment.

Article Abstract

The generation of organic matter (OM) occurs synchronously with phytoplankton growth. Characterization of the generated particulate and dissolved OM during algal blooms in eutrophic lakes is crucial for better understanding the carbon cycle but remains limited. We speculate that sediments play a critical role in the biogeochemical transformation of OM derived from algal blooms in shallow lakes. In this study, changes in OM quantity and quality and the concentrations of biogenic elements (nutrients and metals) during algal blooms, were studied in situ in a shallow eutrophic lake (Lake Chaohu, China). Two enclosure treatments in the presence and absence of sediments were compared, and the cause-effect relationships among sediment, nutrients, metals, phytoplankton, particulate OM (POM), and dissolved OM (DOM) were revealed by a partial least square-path model (PLS-PM). The results showed that the changes in nutrients and metals concentrations over time were consistent with that of chlorophyll a (Chl a), and at the end of the treatment, the concentrations of Chl a, nutrients, and metals in Treatment S (with sediments) were approximately 3-5 times of those in Treatment N (without sediments). The high concentration of Chl a in Treatment S resulted in a high quantity of POM, which showed low molecular weight, low humification, and was enriched in protein-like components (∼ 70%). For DOM, the quantity increased after the decrease in POM, and DOM quality showed a significantly higher abundance of humic-like components and a higher molecular weight than POM did. The PLS-PM results showed that the significant positive effects of sediment on nutrients, metals, phytoplankton, POM, and DOM were 0.28, 0.37, 0.28, 0.25, and 0.25, respectively, suggesting that sediment had an important role in the biogeochemical cycles of these substances. The significant negative relationship between POM and DOM (-0.62) and the distinct difference in POM and DOM quality implied the efficient transformation of the freshly generated OM to those with a higher molecular weight, higher humification, and potentially refractory. Our results depicted the quick biogeochemical transformation of nutrients, metals, and the potential formation of refractory organic carbon in water column, as driven by the couple of the algae pump with the microbial carbon pump.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118560DOI Listing

Publication Analysis

Top Keywords

nutrients metals
24
algal blooms
16
pom dom
16
molecular weight
12
organic matter
8
blooms shallow
8
role biogeochemical
8
biogeochemical transformation
8
sediment nutrients
8
metals phytoplankton
8

Similar Publications

Historical record of trace elements since MIS 2 in a sediment core of Laizhou Bay, China.

Environ Monit Assess

January 2025

Sinopec Offshore Oilfield Services Company, Shanghai, 201208, China.

The concentration of trace elements in sediments is a critical element in the quality of nearshore environments. Geochemical background values are the normal concentrations of trace elements in the natural environment, and the use of different background values has resulted in different evaluations. Trace element (Cu, Pb, Zn, Cr, Cd, As, and Hg) concentration profiles along a sediment core were investigated to obtain background values and to assess the depositional processes and contamination levels in Laizhou Bay.

View Article and Find Full Text PDF

Sustainable agricultural practices are essential to meet food demands for the increased population while minimizing the environmental impact. Considering rice as staple food for most of the world's population, it requires innovative approaches to ensure sustainable production. In this paper, we create a hypothesis that integrated nutrient management (INM) acts as a source of energy for microbes and improves the physical, chemical and biological properties of soils, but the current understanding of how soil microbiomes interact in integrated nutrient management toward mediating climate stress to support sustainable rice crop production is limited.

View Article and Find Full Text PDF

The nutritional status of fathers plays a significant role in influencing the growth, metabolism, and susceptibility to diseases in their offspring. Paternal zinc deficiency can lead to developmental programming effects on the offspring's zinc homeostasis. This study investigated the effects of paternal zinc deficiency on the zinc homeostasis of offspring in a Drosophila melanogaster (fruit fly) model.

View Article and Find Full Text PDF

Simple and effective filtration system for drinking water production from harvested rainwater in rural areas.

J Environ Manage

January 2025

School of Engineering, Design and Built Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.

Rainwater harvesting (RWH) for drinking water production has been a potential solution to mitigate water scarcity in rural areas. There was limited research focusing on the quality of treated rainwater. This study developed and tested the quality of a drinking water filtration system (DWFS) for treating harvested rainwater to support rural communities.

View Article and Find Full Text PDF

Contrasting effects of arsenic on mycorrhizal-mediated silicon and phosphorus uptake by rice.

J Environ Manage

January 2025

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!