Objective: To examine the effect of maternal age on the rate of clinically significant chromosomal microarray analysis results in pregnancies with abnormal maternal serum screening and to establish the residual risk for abnormal microarray findings after omitting noninvasive prenatal testing (NIPT)-detectable aberrations in pregnancies with abnormal maternal serum screening.
Methods: This retrospective study included all chromosomal microarray analysis tests performed in pregnancies with abnormal maternal serum screening and normal ultrasonogram results over the years 2013-2021. The rate of clinically significant (pathogenic and likely pathogenic) chromosomal microarray analysis findings was compared with a local control cohort of 7,235 pregnancies with normal maternal serum screening and ultrasonogram results, stratified by maternal age. Calculation of residual risk for clinically significant chromosomal microarray analysis results after normal NIPT was performed by omission of common NIPT-detectable anomalies. Systematic review for studies examining the yield of chromosomal microarray analysis in pregnancies with abnormal maternal serum screening was performed from inception to October 2021, with no time or language restrictions.
Results: Of the 559 amniocenteses performed due to abnormal maternal serum screening, 21 (3.8%; 95% CI 2.4-5.7%) clinically significant chromosomal microarray analysis results were found. The residual risk for chromosomal microarray analysis aberrations after theoretically normal NIPT was estimated to be 2.0% (95% CI 1.1-3.6%) (1/50) and was significantly higher for women younger than age 35 years with abnormal maternal serum screening, compared with women with low-risk pregnancies. Systematic review yielded six articles encompassing 4,890 chromosomal microarray analysis results in pregnancies with abnormal maternal serum screening, demonstrating 2.3% residual risk for chromosomal microarray analysis anomalies after theoretically normal NIPT.
Discussion: Clinically significant chromosomal microarray analysis findings can be found in 1 of every 50 pregnancies with high-risk maternal serum screening after theoretically normal NIPT, implying that invasive testing and not NIPT should be recommended in such pregnancies. In addition, NIPT use as a first-tier screening modality instead of maternal serum screening would miss pregnancies at increased risk not only for common autosomal trisomies but for additional chromosomal microarray analysis-detectable disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/AOG.0000000000004758 | DOI Listing |
BMC Pediatr
January 2025
Pediatric Internal Medicine, Yantai Yuhuangding Hospital, No.20 Yuhuangding East Road, Zhifu District, Yantai City, Shandong, 264000, China.
Background: Common clinical findings in patients with 19p13.3 duplication include intrauterine growth restriction, intellectual disability, developmental delay, microcephaly, and distinctive facial features. In this study, we report the case of a patient with 19p13.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2025
Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA USA.
The contribution of sex hormones to cardiovascular disease, including arterial stiffness, is established; however, the role of sex chromosome interaction with sex hormones, particularly in women, is lagging. Arterial structural stiffness depends on the intrinsic properties and transmural wall geometry that comprise a network of cells and extracellular matrix (ECM) proteins expressed in a sex-dependent manner. In this study, we used four-core genotype (FCG) mice to determine the relative contribution of sex hormones versus sex chromosomes or their interaction with arterial structural stiffness.
View Article and Find Full Text PDFAndrology
January 2025
Division of Pediatric Endocrinology, All India Institute of Medical Sciences, New Delhi, India.
Background: 46, XY disorders of sex development (DSD) are a group of highly heterogeneous conditions in which the molecular etiology remains unknown in a significant proportion of patients, even with massive parallel sequencing. Clinically significant copy number variants (CNVs) are identified in 20-30% of cases, particularly among those with gonadal dysgenesis (GD) and no molecular diagnosis.
Methods: Fourteen patients with 46, XY DSD due to GD in whom no pathogenic/likely pathogenic variants were found on next-generation sequencing using a targeted panel of 155 genes were screened for clinically significant CNVs using Affymetrix Comparative Genomic Hybridization (CGH).
BMC Genomics
January 2025
Centre for Environmental Health, Hasselt University, Hasselt, Belgium.
Background: Telomere length is an important indicator of biological age and a complex multi-factor trait. To date, the telomere interactome for comprehending the high-dimensional biological aspects linked to telomere regulation during childhood remains unexplored. Here we describe the multi-omics signatures associated with childhood telomere length.
View Article and Find Full Text PDFJ Appl Genet
January 2025
Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland.
Identification of chromosomal abnormalities is an important issue in animal breeding and veterinary medicine. Routine cytogenetic diagnosis of domestic animals began in the 1960s with the aim of identifying carriers of centric fusion between chromosome 1 and 29 in cattle. In the 1970s, chromosome banding techniques were introduced, and in the 1980s, the first cytogenomic techniques, based on the development of locus- and chromosome-specific probes, were used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!