Phthalates removal from wastewater by different methods - a review.

Water Sci Technol

Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India E-mail:

Published: May 2022

Phthalate esters are commonly used as plasticizers to improve the durability and workability of polymeric materials, locating and identifying them in various contexts has become a major challenge. Because of their ubiquitous use in plastic packaging and personal care items, as well as their tendency to leach out of these materials, phthalates have been detected in a variety of aquatic situations, including surface water, groundwater, drinking water, and wastewater. Phthalate esters have been shown to affect reproductive health and physical growth by disrupting the endocrine system. As a result, developing energy-efficient and effective technologies to eliminate these harmful substances from the atmosphere has become more important and urgent. This paper examines the existing techniques for treating phthalates and degradation mechanisms, as well as knowledge gaps and future research directions. These technologies include adsorption, electrochemical, photocatalysis, membrane filtration and microbial degradation. Adsorption and photo catalysis are the most widely used techniques for phthalate removal, according to the literature survey papers.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2022.133DOI Listing

Publication Analysis

Top Keywords

phthalate esters
8
phthalates removal
4
removal wastewater
4
wastewater methods
4
methods review
4
review phthalate
4
esters commonly
4
commonly plasticizers
4
plasticizers improve
4
improve durability
4

Similar Publications

Sex- and trimester-specific impact of gestational co-exposure to organophosphate esters and phthalates on insulin action among preschoolers: Findings from the Ma'anshan birth cohort.

Environ Int

January 2025

Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China. Electronic address:

Introduction: Prenatal exposure to organophosphate esters (OPEs) and phthalic acid esters (PAEs) is ubiquitous among pregnant individuals. However, research exploring the relationship between prenatal co-exposure to OPEs and PAEs and childhood insulin function remains limited.

Methods: In this study, utilizing data from 2,246 maternal-fetal dyads in the Ma'anshan Birth Cohort, associations between co-exposure to OPEs and PAEs and insulin action were analyzed.

View Article and Find Full Text PDF

Exposure experiments and machine learning revealed that personal care products can significantly increase transdermal exposure of SVOCs from the environment.

J Hazard Mater

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

We investigated the impacts of personal care products (PCPs) on dermal exposure to semi-volatile organic compounds (SVOCs), including phthalates, organophosphate esters, polycyclic aromatic hydrocarbons (PAHs), ultraviolet filters, and p-phenylenediamines, through an experiment from volunteers, explored the impact mechanisms of PCP ingredients on dermal exposure, and predicted the PCP effects on SVOC concentrations in human serum using machine learning. After applying PCPs, namely lotion, baby oil, sunscreen, and blemish balm, the dermal adsorption of SVOCs increased significantly by 1.63 ± 0.

View Article and Find Full Text PDF

The extensive application of plasticizers has led to significant environmental issues. This study focused on the ecotoxic effects on earthworms of the traditional plasticizer di(2-ethylhexyl) phthalate (DEHP) and non-phthalate plasticizers di(ethylhexyl) terephthalate (DEHT) and acetyltributyl citrate (ATBC). At an environmentally relevant concentration (50 mg/kg), significant accumulation of ROS was observed in earthworms, with a trend of DEHP > DEHT > ATBC, inducing oxidative stress and lipid peroxidation.

View Article and Find Full Text PDF

A comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOF-MS) method was developed to analyze 25 traditional phthalate esters (PAEs) and 19 novel alternatives in indoor dust samples. PAEs are ubiquitous in indoor environments because they are widely used as plasticizers in a variety of consumer products, and potential health concerns have prompted the need for effective monitoring methods. In this study, dust samples were collected from various indoor settings in a university campus, including classrooms, cafeterias, laboratories, and dormitories, and were subsequently ultrasonically extracted with hexane-dichloromethane (1∶1, v/v) solution for 30 min.

View Article and Find Full Text PDF

Phthalate exposure is linked to prostate enlargement through sex hormonal changes and oxidative stress. However, its role and action mechanism in prostate cancer remain unclear. This study examined two patient cohorts: 204 patients undergoing prostate biopsy (24 benign and 180 malignancies) and 85 with confirmed prostate cancer receiving robotic-assisted radical prostatectomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!